Complement-equivalence classes on graphs | SpringerLink
Skip to main content

Complement-equivalence classes on graphs

  • Graphs and Algorithms
  • Chapter
  • First Online:
Structures in Logic and Computer Science

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1261))

  • 140 Accesses

Abstract

A complementation operation on a vertex of a digraph changes all outgoing edges into nonedges, and outgoing nonedges into edges. A similar operation is defined for incoming edges. This defines an equivalence relation where two graphs are equivalent if one can be obtained from the other by a sequence of such operations. We show that given an adjacency-list representation of a digraph G, many fundamental graph algorithms can be carried out on any member of G's equivalence class in O(size(G)) time. We use this fact to obtain a simple O(n+mlogn) algorithm for modular decomposition of undirected graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aho, A.V., Hopcroft, J.E., Ullman, J.D.: The Design and Analysis of Computer Algorithms, Addison-Wesley (1974)

    Google Scholar 

  2. Cournier, A., Habib, M.: A new linear algorithm for modular decomposition, CAAP '94: 19th international colloquium, lecture notes in computer science, Sophie Tison, ed., Edinburgh, UK (1994) 68–82

    Google Scholar 

  3. Cormen, T.H., Leiserson, C.E., Rivest, R.L.: Algorithms, MIT Press (1990)

    Google Scholar 

  4. Dahlhaus, E., Gustedt, J., McConnell, R.M.: Efficient and practical modular decomposition, Proc. 8th annual ACM-SIAM Symposium on Discrete Algorithms, New Orleans (1997) 26–35

    Google Scholar 

  5. Ehrenfeucht, A., Gabow, H.N., McConnell, R.M., Sullivan, S.J.: An O(n 2) divide-and-conquer algorithm for the prime tree decomposition of two-structures and modular decomposition of graphs, Journal of Algorithms 16 (1994) 283–294

    Google Scholar 

  6. Ehrenfeucht, A., Rozenberg, G.: Angular 2-structures, Theoretical Computer Science 92 (1992) 227–248

    Google Scholar 

  7. Ehrenfeucht, A., Rozenberg, G.: Dynamic labeled 2-structures, Math. Struct. in Comp. Science 4 (1994) 433–455

    Google Scholar 

  8. Ehrenfeucht, A., Rozenberg, G.: Theory of 2-structures, part 1: clans, basic sub-classes, and morphisms, Theoretical Computer Science 70 (1990) 277–303

    Google Scholar 

  9. Ehrenfeucht, A., Rozenberg, G.: Theory of 2-structures, part 2: representations through labeled tree families, Theoretical Computer Science 70 (1990) 305–342

    Google Scholar 

  10. Habib, M., Paul C., Viennot, L.: Lex-BFS, a partition refining technique, manuscript.

    Google Scholar 

  11. McConnell, R.M., Spinrad, J.P.: Linear-time modular decomposition and efficient transitive orientation of comparability graphs, Proc. 5th Annual ACM-SIAM Symposium on Discrete Algorithms, Arlington, Virginia (1994) 536–545

    Google Scholar 

  12. McConnell, R.M., Spinrad, J.P.: Linear-time transitive orientation, “Proc. 8th Annual ACM-SIAM Symposium on Discrete Algorithms”, New Orleans (1997) 19–25

    Google Scholar 

  13. Moehring, R.H.: Algorithmic aspects of comparability graphs and interval graphs, in Graphs and Orders, I. Rival, ed., D. Reidel (1985) 41–101.

    Google Scholar 

  14. Rose, D., Tarjan, R.E., Leuker, G.S.: Algorithmic aspects of vertex elimination on graphs, SIAM J. Comput. 5 (1976) 266–283

    Google Scholar 

  15. Rotem, D., Urrutia, J.: Circular permutation graphs, Networks 12 (1982) 429–437

    Google Scholar 

  16. Spinrad, J.P.: Vertex partitioning, Manuscript.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Jan Mycielski Grzegorz Rozenberg Arto Salomaa

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

McConnell, R. (1997). Complement-equivalence classes on graphs. In: Mycielski, J., Rozenberg, G., Salomaa, A. (eds) Structures in Logic and Computer Science. Lecture Notes in Computer Science, vol 1261. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-63246-8_11

Download citation

  • DOI: https://doi.org/10.1007/3-540-63246-8_11

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-63246-7

  • Online ISBN: 978-3-540-69242-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics