Phylogeny, ontogeny, and epigenesis: Three sources of biological inspiration for softening hardware | SpringerLink
Skip to main content

Phylogeny, ontogeny, and epigenesis: Three sources of biological inspiration for softening hardware

  • Overview
  • Conference paper
  • First Online:
Evolvable Systems: From Biology to Hardware (ICES 1996)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1259))

Included in the following conference series:

Abstract

Living beings are complex systems exhibiting a range of desirable qualifications that have eluded realization by traditional engineering methodologies. In recent years we are witness to a growing interest in Nature exhibited by engineers, wishing to imitate the observed processes, thereby creating powerful problem-solving methodologies. If one considers Life on earth since its very beginning, three levels of organization can be distinguished: the phylogenetic level concerns the temporal evolution of the genetic programs within individuals and species, the ontogenetic level concerns the developmental process of a single multicellular organism, and the epigenetic level concerns the learning processes during an individual organism's lifetime. In analogy to Nature, the space of bioinspired systems can be partitioned along these three axes, phylogeny, ontogeny, and epigenesis, giving rise to the POE model. This paper is an exposition and examination of bio-inspired systems within the POE framework. We first discuss each of the three axes separately, considering the systems created to date and plotting directions for continued progress along the axis in question. We end our exposition by a discussion of possible research directions, involving the construction of bio-inspired systems that are situated along two, and ultimately all three axes. This presents a vision for the future which will see the advent of novel systems, inspired by the powerful examples provided by Nature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. L. E. Atlas and Y. Suzuki. Digital systems for artificial neural networks. IEEE Circuits and Devices magazine, pages 20–24, November 1989.

    Google Scholar 

  2. T. Bäck. Evolutionary algorithms in theory and practice: evolution strategies, evolutionary programming, genetic algorithms. Oxford University Press, New York, 1996.

    Google Scholar 

  3. E. R. Banks. Universality in cellular automata. In IEEE 11th Annual Symposium on Switching and Automata Theory, pages 194–215, Santa Monica, California, October 1970.

    Google Scholar 

  4. R. A. Brooks. New approaches to robotics. Science, 253(5025):1227–1232, September 1991.

    Google Scholar 

  5. A. Burks, editor. Essays on cellular automata. University of Illinois Press, Urbana, Illinois, 1970.

    Google Scholar 

  6. J. Byl. Self-reproduction in small cellular automata. Physica D, 34:295–299, 1989.

    Google Scholar 

  7. J. Changeux and A. Danchin. Selective stabilisation of developing synapses as a mechanism for the specification of neural networks. Nature, 264:705–712, 1976.

    Google Scholar 

  8. E. F. Codd. Cellular Automata. Academic Press, New York, 1968.

    Google Scholar 

  9. A. Danchin. A selective theory for the epigenetic specification of the monospecific antibody production in single cell lines. Ann. Immunol. (Institut Pasteur), 127C:787–804, 1976.

    Google Scholar 

  10. A. Danchin. Stabilisation fonctionnelle et épigénèse: une approche biologique de la genèse de l'identité individuelle. In J.-M. Benoist, editor, L'identité, pages 185–221. Grasset, 1977.

    Google Scholar 

  11. R. Dawkins. The Blind Watchmaker. W.W. Norton and Company, 1986.

    Google Scholar 

  12. R. Dawkins. The evolution of evolvability. In C. G. Langton, editor, Artificial Life, volume VI of SFI Studies in the Sciences of Complexity, pages 201–220. Addison-Wesley, 1989.

    Google Scholar 

  13. H. de Garis. Evolvable hardware: Genetic programming of a Darwin machine. In R. F. Albrecht, C. R. Reeves, and N. C. Steele, editors, Artificial Neural Nets and Genetic Algorithms, pages 441–449, Berlin, 1993. Springer-Verlag.

    Google Scholar 

  14. H. de Garis. “Cam-Brain” ATR's billion neuron artificial brain project: A three year progress report. In Proceedings of IEEE Third International Conference on Evolutionary Computation (ICEC'96), pages 886–891, 1996.

    Google Scholar 

  15. G. M. Edelman. Neural Darwinism: The Theory of Neuronal Group Selection. Basic Books, New York, 1987.

    Google Scholar 

  16. J. D. Farmer and A. d'A. Belin. Artificial life: The coming evolution. In C. G. Langton, C. Taylor, J. D. Farmer, and S. Rasmussen, editors, Artificial Life II, volume X of SFI Studies in the Sciences of Complexity, pages 815–840, Redwood City, CA, 1992. Addison-Wesley.

    Google Scholar 

  17. D. B. Fogel. Evolutionary computation: toward a new philosophy of machine intelligence. IEEE Press, Piscataway, NJ, 1995.

    Google Scholar 

  18. P. Galley and E. Sanchez. A hardware implementation of a Tierra processor. Unpublished internal report (in French), Logic Systems Laboratory, Swiss Federal Institute of Technology, Lausanne, 1996.

    Google Scholar 

  19. M. S. Gazzaniga. Organization of the human brain. Science, 245:947–952, 1989.

    Google Scholar 

  20. F. Gers and H. de Garis. CAM-Brain: A new model for ATR's cellular automata based artificial brain project. In Proceedings of The First International Conference on Evolvable Systems: from Biology to Hardware (ICES96), Lecture Notes in Computer Science. Springer-Verlag, Heidelberg, 1996.

    Google Scholar 

  21. M. Goeke, M. Sipper, D. Mange, A. Stauffer, E. Sanchez, and M. Tomassini. Online autonomous evolware. In Proceedings of The First International Conference on Evolvable Systems: from Biology to Hardware (ICES96), Lecture Notes in Computer Science. Springer-Verlag, Heidelberg, 1996.

    Google Scholar 

  22. D. E. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley, 1989.

    Google Scholar 

  23. H. P. Graf and L. D. Jackel. Analog electronic neural network circuits. IEEE Circuits and Devices magazine, pages 44–49, July 1989.

    Google Scholar 

  24. B. Happel and J. M. Murre. Design and evolution of modular neural network architectures. Neural Networks, 7(6/7):985–1004, 1994.

    Google Scholar 

  25. H. Hemmi, J. Mizoguchi, and K. Shimohara. Development and evolution of hardware behaviors. In E. Sanchez and M. Tomassini, editors, Towards Evolvable Hardware, volume 1062 of Lecture Notes in Computer Science, pages 250–265. Springer-Verlag, Berlin, 1996.

    Google Scholar 

  26. T. Higuchi, M. Iwata, I. Kajitani, H. Iba, Y. Hirao, T. Furuya, and B. Manderick. Evolvable hardware and its application to pattern recognition and fault-tolerant systems. In E. Sanchez and M. Tomassini, editors, Towards Evolvable Hardware, volume 1062 of Lecture Notes in Computer Science, pages 118–135. Springer-Verlag, Berlin, 1996.

    Google Scholar 

  27. T. Hikage, H. Hemmi, and K. Shimohara. Hardware evolution system: Introducing dominant and recessive heredity. In Proceedings of The First International Conference on Evolvable Systems: from Biology to Hardware (ICES96), Lecture Notes in Computer Science. Springer-Verlag, Heidelberg, 1996.

    Google Scholar 

  28. J. H. Holland. Adaptation in Natural and Artificial Systems. The University of Michigan Press, Ann Arbor, Michigan, 1975.

    Google Scholar 

  29. J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory Languages and Computation. Addison-Wesley, Redwood City, CA, 1979.

    Google Scholar 

  30. J. O. Kephart. A biologically inspired immune system for computers. In R. A. Brooks and P. Maes, editors, Artificial Life IV, pages 130–139, Cambridge, Massachusetts, 1994. The MIT Press.

    Google Scholar 

  31. H. Kitano. Morphogenesis for evolvable systems. In E. Sanchez and M. Tomassini, editors, Towards Evolvable Hardware, volume 1062 of Lecture Notes in Computer Science, pages 99–117. Springer-Verlag, Berlin, 1996.

    Google Scholar 

  32. J. R. Koza. Genetic Programming. The MIT Press, Cambridge, Massachusetts, 1992.

    Google Scholar 

  33. J. R. Koza, F. H. Bennett III, D. Andre, and M. A. Keane. Automated WYWI-WYG design of both the topology and component values of electrical circuits using genetic programming. In J. R. Koza, D. E. Goldberg, D. B. Fogel, and R. L. Riolo, editors, Genetic Programming 1996: Proceedings of the First Annual Conference, pages 123–131, Cambridge, MA, 1996. The MIT Press.

    Google Scholar 

  34. C. G. Langton. Self-reproduction in cellular automata. Physica D, 10:135–144, 1984.

    Google Scholar 

  35. Y. Liu and X. Yao. Evolutionary design of artificial neural networks with different nodes. In Proceedings of IEEE Third International Conference on Evolutionary Computation (ICEC'96), pages 670–675, 1996.

    Google Scholar 

  36. D. Mange, M. Goeke, D. Madon, A. Stauffer, G. Tempesti, and S. Durand. Embryonics: A new family of coarse-grained field-programmable gate arrays with self-repair and self-reproducing properties. In E. Sanchez and M. Tomassini, editors, Towards Evolvable Hardware, volume 1062 of Lecture Notes in Computer Science, pages 197–220. Springer-Verlag, Berlin, 1996. Also available as: Technical Report 95/154, Department of Computer Science, Swiss Federal Institute of Technology, Lausanne, Switzerland, November, 1995.

    Google Scholar 

  37. D. Mange, D. Madon, A. Stauffer, and G. Tempesti. Von Neumann revisited: A Turing machine with self-repair and self-reproduction properties. Technical Report 96/180, Department of Computer Science, Swiss Federal Institute of Technology, Lausanne, Switzerland, March 1996. (submitted for publication).

    Google Scholar 

  38. D. Mange, E. Sanchez, A. Stauffer, G. Tempesti, S. Durand, P. Marchal, and C. Piguet. Embryonics: A new methodology for designing field-programmable gate arrays with self-repair and self-reproducing properties. Technical Report 95/152, Department of Computer Science, Swiss Federal Institute of Technology, Lausanne, Switzerland, October 1995.

    Google Scholar 

  39. D. Mange and A. Stauffer. Introduction to embryonics: Towards new self-repairing and self-reproducing hardware based on biological-like properties. In N. M. Thalmann and D. Thalmann, editors, Artificial Life and Virtual Reality, pages 61–72, Chichester, England, 1994. John Wiley.

    Google Scholar 

  40. P. Marchal, C. Piguet, D. Mange, A. Stauffer, and S. Durand. Embryological development on silicon. In R. A. Brooks and P. Maes, editors, Artificial Life IV, pages 365–370, Cambridge, Massachusetts, 1994. The MIT Press.

    Google Scholar 

  41. Z. Michalewicz. Genetic algorithms+data structures=evolution programs. Springer, Berlin, third edition, 1996.

    Google Scholar 

  42. M. Mitchell. An Introduction to Genetic Algorithms. MIT Press, Cambridge, MA, 1996.

    Google Scholar 

  43. J. Monod. Chance And Necessity: An Essay On The Natural Philosophy Of Modern Biology. Vintage, New York, 1971.

    Google Scholar 

  44. J. M. Moreno. VLSI Architectures for Evolutive Neural Models. PhD thesis, Universitat Politecnica de Catalunya, Barcelona, 1994.

    Google Scholar 

  45. K. Morita and K. Imai. Logical universality and self-reproduction in reversible cellular automata. In Proceedings of The First International Conference on Evolvable Systems: from Biology to Hardware (ICES96), Lecture Notes in Computer Science. Springer-Verlag, Heidelberg, 1996.

    Google Scholar 

  46. S. Nolfi, D. Parisi, and J. L. Elman. Learning and evolution in neural networks. Adaptive Behavior, 3(1):5–28, 1994.

    Google Scholar 

  47. A. Perez and E. Sanchez. FPGA implementation of an adaptable-size neural network. In C. von der Malsburg, W. von Seelen, J. C. Vorbrüggen, and B. Sendhoff, editors, Proceedings of the International Conference on Artificial Neural Networks (ICANN96), volume 1112 of Lecture Notes in Computer Science, pages 383–388. Springer-Verlag, Heidelberg, 1996.

    Google Scholar 

  48. A. Perez and E. Sanchez. Neural networks structure optimization through on-line hardware evolution. In Proceedings of the World Congress on Neural Networks (WCNN96). INNS (International Neural Networks Society) Press, 1996. (to appear).

    Google Scholar 

  49. J.-Y. Perrier, M. Sipper, and J. Zahnd. Toward a viable, self-reproducing universal computer. Physica D, 97:335–352, 1996.

    Google Scholar 

  50. S. R. Quartz and T. J. Sejnowski. The neural basis of cognitive development: A constructivism manifesto. Behavioral and Brain Sciences, 1996. (to appear).

    Google Scholar 

  51. T. S. Ray. An approach to the synthesis of life. In C. G. Langton, C. Taylor, J. D. Farmer, and S. Rasmussen, editors, Artificial Life II, volume X of SFI Studies in the Sciences of Complexity, pages 371–408, Redwood City, CA, 1992. Addison-Wesley.

    Google Scholar 

  52. J. A. Reggia, S. L. Armentrout, H.-H. Chou, and Y. Peng. Simple systems that exhibit self-directed replication. Science, 259:1282–1287, February 1993.

    Google Scholar 

  53. A. Roy, S. Govil, and R. Mirand. A neural network learning theory and a polynomial time RBF algorithm. IEEE Transactions on Neural Networks, 1996. (to appear).

    Google Scholar 

  54. E. Sanchez. Field programmable gate array (FPGA) circuits. In E. Sanchez and M. Tomassini, editors, Towards Evolvable Hardware, volume 1062 of Lecture Notes in Computer Science, pages 1–18. Springer-Verlag, Berlin, 1996.

    Google Scholar 

  55. E. Sanchez and M. Tomassini, editors. Towards Evolvable Hardware, volume 1062 of Lecture Notes in Computer Science. Springer-Verlag, Berlin, 1996.

    Google Scholar 

  56. H.-P. Schwefel. Evolution and Optimum Seeking. John Wiley & Sons, New York, 1995.

    Google Scholar 

  57. M. Sipper and M. Tomassini. Co-evolving parallel random number generators. In H.-M. Voigt, W. Ebeling, I. Rechenberg, and H.-P. Schwefel, editors, Parallel Problem Solving from Nature — PPSN IV, volume 1141 of Lecture Notes in Computer Science, pages 950–959. Springer-Verlag, Heidelberg, 1996.

    Google Scholar 

  58. M. Sipper and M. Tomassini. Generating parallel random number generators by cellular programming. International Journal of Modern Physics C, 7(2):181–190, 1996.

    Google Scholar 

  59. G. Tempesti. A new self-reproducing cellular automaton capable of construction and computation. In F. Morán, A. Moreno, J. J. Merelo, and P. Chacón, editors, ECAL'95: Third European Conference on Artificial Life, volume 929 of Lecture Notes in Computer Science, pages 555–563, Berlin, 1995. Springer-Verlag.

    Google Scholar 

  60. A. Thompson. Silicon evolution. In J. R. Koza, D. E. Goldberg, D. B. Fogel, and R. L. Riolo, editors, Genetic Programming 1996: Proceedings of the First Annual Conference, pages 444–452, Cambridge, MA, 1996. The MIT Press.

    Google Scholar 

  61. A. Thompson, I. Harvey, and P. Husbands. Unconstrained evolution and hard consequences. In E. Sanchez and M. Tomassini, editors, Towards Evolvable Hardware, volume 1062 of Lecture Notes in Computer Science, pages 136–165. Springer-Verlag, Berlin, 1996.

    Google Scholar 

  62. M. Tomassini. A survey of genetic algorithms. In D. Stauffer, editor, Annual Reviews of Computational Physics, volume III, pages 87–118. World Scientific, 1995. Also available as: Technical Report 95/137, Department of Computer Science, Swiss Federal Institute of Technology, Lausanne, Switzerland, July, 1995.

    Google Scholar 

  63. M. Tomassini. Evolutionary algorithms. In E. Sanchez and M. Tomassini, editors, Towards Evolvable Hardware, volume 1062 of Lecture Notes in Computer Science, pages 19–47. Springer-Verlag, Berlin, 1996.

    Google Scholar 

  64. J. von Neumann. Theory of Self-Reproducing Automata. University of Illinois Press, Illinois, 1966. Edited and completed by A.W. Burks.

    Google Scholar 

  65. L. Wolpert. The Triumph of the Embryo. Oxford University Press, New York, 1991.

    Google Scholar 

  66. S. Xanthakis, R. Pajot, and A. Rozz. Immune system and fault-tolerant computing. In Evolution artificielle 94. Cepadues, cop., 1995.

    Google Scholar 

  67. R. R. Yager and L. A. Zadeh. Fuzzy Sets, Neural Networks, and Soft Computing. Van Nostrand Reinhold, New York, 1994.

    Google Scholar 

  68. X. Yao. Evolutionary artificial neural networks. International Journal of Neural Systems, 4(3):203–222, 1993.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Tetsuya Higuchi Masaya Iwata Weixin Liu

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sanchez, E., Mange, D., Sipper, M., Tomassini, M., Perez-Uribe, A., Stauffer, A. (1997). Phylogeny, ontogeny, and epigenesis: Three sources of biological inspiration for softening hardware. In: Higuchi, T., Iwata, M., Liu, W. (eds) Evolvable Systems: From Biology to Hardware. ICES 1996. Lecture Notes in Computer Science, vol 1259. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-63173-9_37

Download citation

  • DOI: https://doi.org/10.1007/3-540-63173-9_37

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-63173-6

  • Online ISBN: 978-3-540-69204-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics