Logical reconstruction of bi-domains | SpringerLink
Skip to main content

Logical reconstruction of bi-domains

  • Conference paper
  • First Online:
Typed Lambda Calculi and Applications (TLCA 1997)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1210))

Included in the following conference series:

  • 126 Accesses

Abstract

We introduce a technique based on logical relations, which, given two models M and N of a simply typed lambda-calculus L, allows us to construct a model M/N whose L-theory is a superset of both Th(M) and Th(N).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. S. Abramsky, R. Jagadeesan, P. Malacaria. Full abstraction for PCF (Extended Abstract). Proc. of TACS 94, Lecture Notes in Computer Science 789, 1–15, Springer, 1994.

    Google Scholar 

  2. G. Berry. Modèles complètement adéquats et stables des λ-calculs typés, Thèse de Doctorat d'Etat, Université Paris VII, 1979.

    Google Scholar 

  3. G. Berry. Stable models of typed lambda-calculi. Proc. 5th Int. Coll. on Automata, Languages and Programming, Lecture Notes in Computer Science 62, 72–89, Springer, 1978.

    Google Scholar 

  4. G. Berry and P.L. Curien. Sequential algorithms on concrete data structures. Theoretical Computer Science 20, 265–231, 1982.

    Google Scholar 

  5. A. Bucciarelli. Logical relations and λ-theories. Proc. Imperial College Theory and Formal Methods Section Workshop, to appear, 1996.

    Google Scholar 

  6. A. Bucciarelli, T. Ehrhard. Sequentiality and Strong Stability. Proc. 6th Int. Symp. on Logic in Computer Science, 138–145, IEEE Computer Society Press, 1991.

    Google Scholar 

  7. A. Bucciarelli, T. Ehrhard. Extensional embedding of a strongly stable model of PCF. Proc. 18th Int. Coll. on Automata, Languages and Programming, Lecture Notes in Computer Science 510, 35–44, Springer, 1991.

    Google Scholar 

  8. A. Bucciarelli, T. Ehrhard. Sequentiality in an extensional framework. Information and Computation, Volume 110, Number 2, 265–296, 1994.

    Google Scholar 

  9. P.L. Curien. Categorical Combinators, Sequential Algorithms and Functional Programming. Revised edition, Birkhäuser, 1993.

    Google Scholar 

  10. T. Ehrhard. A relative definability result for strongly stable functions and some corollaries. Submitted paper, available at http://ida.dcs.qmw.ac.uk/authors/E/EhrhardT/, 1996.

    Google Scholar 

  11. H. Friedman. Equality between functionals. Proc. Logic Colloquium, Lecture Notes in Mathematics 453, 22–37, Springer, 1973.

    Google Scholar 

  12. J.M.E. Hyland, L. Ong. On full abstraction for PCF: I, II and III. 133pp, submitted paper, 1994.

    Google Scholar 

  13. T. Jim, A. Meyer. Full Abstraction and the Context Lemma. Proc. Theoretical Aspects of Comp. Sci. 1991, Lecture Notes in Computer Science 526, 131–151, Springer, 1991.

    Google Scholar 

  14. R. Loader. Finitary PCF is not decidable. Unpublished notes, available at http://info.ox.ac.uk/loader. 1996.

    Google Scholar 

  15. J.C. Mitchell. Type Systems for Programming Languages Handbook of Theoretical Computer Science, Volume B, edited by J. van Leeuwen, 365–458, Elsevier, 1990.

    Google Scholar 

  16. P. O'Hearn, J. Riecke. Kripke Logical Relations and PCF. To appear in Information and Computation.

    Google Scholar 

  17. G. Plotkin. LCF considered as a programming language. Theoretical Computer Science 5, 223–256, 1977.

    Google Scholar 

  18. D. Scott. A type theoretic alternative to CUCH, ISWIM, OWHY. Theoretical Computer Science 121, 411–440, 1993. Manuscript circulated since 1969.

    Google Scholar 

  19. G. Winskel. Stable Bistructure Models of PCF. BRICS Report Series 94-13, Departement of Computer Science, University of Aarhus, Denmark, 1994.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Philippe de Groote J. Roger Hindley

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bucciarelli, A. (1997). Logical reconstruction of bi-domains. In: de Groote, P., Roger Hindley, J. (eds) Typed Lambda Calculi and Applications. TLCA 1997. Lecture Notes in Computer Science, vol 1210. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-62688-3_31

Download citation

  • DOI: https://doi.org/10.1007/3-540-62688-3_31

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-62688-6

  • Online ISBN: 978-3-540-68438-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics