Abstract
The discretization of long-range transport models leads to huge computational tasks. The advection (the transport due to the wind) and the chemistry are the most difficult parts of such a model. Normally splitting procedures are used and one tries to develop optimal methods for the advection part and for the chemistry part. Some results obtained in the attempts to design good sets of methods which work well for the coupled advection-chemistry sub-model will be presented. Runs on a Silicon Graphics POWER CHALLENGE computer indicate that the methods perform reasonably well and high speed-ups can be achieved with minimal extra efforts. However, more efforts are needed to get closer to the peak performance of this computer.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bott, A., ”A positive definite advection scheme obtained by nonlinear renormalization of the advective fluxes”, Mon. Weather Rev., 117(1989), 1006–1015.
Brandt, J., Mikkelsen, T., Thykier-Nielsen, S. and Zlatev, Z., ”Using a combination of two models in a tracer model”, Mathematical and Computer Modelling, Vol 23 No. 10 (1996), 99–115.
Brandt, J., Wasniewski, J. and Zlatev, Z., ”Handling the chemical part in large air pollution models”, Appl. Math. and Comp. Sci., 6 (1996), 101–121.
Chock, D. P., Winkler, S. L. and Sun, P., ”Comparison of stiff chemistry solvers for air quality models”, Environ. Sci. Technol., 28 (1994), 1882–1892.
Crowley, W. P., ”Numerical advection experiments”, Mon. Weath. Rev., 96 (1968) 1–11.
Deuflhard, P., Nowak, U. and Wulkow, M., ”Recent development in chemical computing”, Computers Chem. Engng., 14 (1990), 1249–1258.
Forester, C. K., ”Higher order monotonic convective difference schemes”, J. Comput. Phys., 23(1977), 1–22.
Fornberg, B., ”A practical guide to pseudospectral methods”, Cambridge Monographs on Applied and Computational Mathematics, Vol. 1, Cambridge University Press, Cambridge-New York-Melburne, 1996.
Hertel, O., Berkowicz, R., Christensen, J. and Hov, Ø., ”Test of two numerical schemes for use in atmospheric transport-chemistry models”, Atmos. Environ., 27A (1993), 2591–2611.
Hesstvedt, E., Hov, Ø. and Isaksen, I. A., ”Quasi-steady-state approximations in air pollution modelling: comparison of two numerical schemes for oxidant prediction”, Internat. J. Chem. Kinetics, 10 (1978), 971–994.
Holm, E., ”High-order numerical methods for advection in atmospheric models”. PhD Thesis, Department of Meteorology, Stockholm University, 1993.
Hov, Ø., Zlatev, Z., Berkowicz, R., Eliassen, A. and Prahm, L. P., ”Comparison of numerical techniques for use in air pollution models with non-linear chemical reactions”, Atmos. Environ., 23 (1988), 967–983.
Marchuk, G. I., ”Mathematical modeling for the problem of the environment”, Studies in Mathematics and Applications, No. 16, North-Holland, Amsterdam, 1985.
McRae G. J., Goodin, W. R. and Seinfeld, J. H., ”Numerical solution of the atmospheric diffusion equations for chemically reacting flows”, J. Comp. Phys., 45 (1984), 1–42.
Molenkampf, C. R., ”Accuracy of finite-difference methods applied to the advection equation”, J. Appl. Meteor., 7 (1968), 160–167.
Odman, M. T., Kumar, N. and Russell, A. G., ”A comparison of fast chemical kinetic solvers for air quality modeling”, Atmos. Environ., 26A (1992), 1783–1789.
Peters, L. K., Berkowitz, C. M., Carmichael, G. R., Easter, R. C., Fairweather, G., Ghan, S. J., Hales, J. M., Leung, L. R., Pennell, W. R., Potra, F. A., Saylor, R. D. and Tsang, T. T., ”The current state and future direction of Eulerian models in simulating the tropospherical chemistry and transport of trace species: A review”, Atmos. Environ., 29 (1995), 189–221
Petzold, L. R., ”Order results for implicit Runge-Kutta methods applied to differential-algebraic systems”, SIAM J. Numer. Anal., 23 (1986), 837–852.
Shieh, D. S., Chang, Y. and G. R. Carmichael, G. R., ”The evaluation of numerical techniques for solution of stiff ordinary differential equations arising from chemical kinetic problems”, Environ. Software, 3 (1988), 28–38.
Skelboe, S. and Zlatev, Z., ”Using partitioning in the treatment of the chemical part of air pollution models”, Springer, Berlin, to appear.
Verwer, J. G. and Simpson, D., ”Explicit methods for stiff ODE's from atmospheric chemistry”, Appl. Numer. Math., to appear.
Zlatev, Z., ”Computer treatment of large air pollution models”, Kluwer Academic Publishers, Dordrecht-Boston-London, 1995.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1996 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Brandt, J., Dimov, I., Georgiev, K., Wasniewski, J., Zlatev, Z. (1996). Coupling the advection and the chemical parts of large air pollution models. In: Waśniewski, J., Dongarra, J., Madsen, K., Olesen, D. (eds) Applied Parallel Computing Industrial Computation and Optimization. PARA 1996. Lecture Notes in Computer Science, vol 1184. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-62095-8_8
Download citation
DOI: https://doi.org/10.1007/3-540-62095-8_8
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-62095-2
Online ISBN: 978-3-540-49643-4
eBook Packages: Springer Book Archive