Abstract
We discuss a novel iterative approach for the computation of a number of eigenvalues and eigenvectors of the generalized eigenproblem Ax=λBx. Our method is based on a combination of the Jacobi-Davidson method and the QZ-method. For that reason we refer to the method as JDQZ. The effectiveness of the method is illustrated by a numerical example.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
W. E. Arnoldi. The principle of minimized iteration in the solution of the matrix eigenproblem. Quart. Appl. Math., 9:17–29, 1951.
J.G.L. Booten, D.R. Fokkema, G.L.G. Sleijpen, and H.A. van der Vorst. Jacobi-Davidson methods for generalized MHD-eigenvalue problems. Zeitschrift für Angewandte Mathematik und Mechanik (ZAMM), 1996.
J. Cullum, W. Kerner, and R. Willoughby. A generalized nonsymmetric Lanczos procedure. Computer Physics Communications, 53:19–48, 1989.
D.R. Fokkema, G.L.G. Sleijpen, and H.A. van der Vorst. Jacobi-Davidson style QR and QZ algorithms for the partial reduction of matrix pencils. Technical Report Preprint 941, Mathematical Institute, Utrecht University, 1996.
G. H. Golub and C. F. van Loan. Matrix Computations. The Johns Hopkins University Press, Baltimore, 1989.
G. L. G. Sleijpen and H.A. Van der Vorst. A Jacobi-Davidson iteration method for linear eigenvalue problems. SIAM J. Matrix Anal.Appl., 17(2):401–425, 1996.
D. C. Sorenson. Implicit application of polynomial filters in a k-step Arnoldi method. SIAM J. Matr. Anal. Appl., 13(1):357–385, 1992.
M.B. Van Gijzen. A parallel eigensolution of an acoustic problem with damping, submitted for publication.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1996 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
van der Vorst, H.A., Sleijpen, G.L.G. (1996). A parallelizable and fast algorithm for very large generalized eigenproblems. In: Waśniewski, J., Dongarra, J., Madsen, K., Olesen, D. (eds) Applied Parallel Computing Industrial Computation and Optimization. PARA 1996. Lecture Notes in Computer Science, vol 1184. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-62095-8_74
Download citation
DOI: https://doi.org/10.1007/3-540-62095-8_74
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-62095-2
Online ISBN: 978-3-540-49643-4
eBook Packages: Springer Book Archive