Abstract
In this survey, we present some of the main open problems in the theory of variable-length codes, together with the major advancements recently realized to solve them.
This work was partially supported by a cooperation project CGRI-FNRS-CNRS.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
J. Ashley, B. Marcus, D. Perrin, S. Tuncel, Surjective extensions of sliding block codes, SIAM J. Discrete Math. 6 (1993) 582–611.
J. Berstel, D. Perrin, Theory of Codes, Academic Press (1985).
J. Berstel, D. Perrin, Trends in the theory of codes, Bull. EATCS 29 (1986) 84–95.
J. Berstel, C. Reutenauer, Rational series and their languages, EATCS Monogr. Theoret. Comput. Sci. 12, Springer-Verlag (1988).
J.-M. Boë, Une famille remarquable de codes indécomposables, Lecture Notes in Comput. Sci. 62 (1978) 105–112.
J.-M. Boë, Sur les codes synchronisants coupants, in: Non-commutative Structures in Algebra and Geometric Combinatorics, A. De Luca, Ed., Quaderni de la Ricerca Scientifica 109 (1981) 7–10.
J.-M. Boë, Factorisation par excès du monoïde libre, Technical Report 94-005, University of Montpellier (1994) 6 pages.
V. Bruyère, Automata and codes with bounded deciphering delay, Lecture Notes in Comput. Sci. 583 (1992) 99–107.
V. Bruyère, D. Derencourt, M. Latteux, The meet operation in the lattice of codes submitted (1996) 16 pages.
V. Bruyère, L. Wang, L. Zhang, On completion of codes with finite deciphering delay, European J. Combin. 11 (1990) 513–521.
J. Brzozowski, Open problems about regular languages, in: Formal Language Theory: Perspectives and Open Problems, R.V. Book, Ed., Academic Press (1980) 23–45.
A. Carpi, On synchronizing unambiguous automata, Theoret. Comput. Sci. 60 (1988) 285–296.
Y. Césari, Sur l'application du théorème de Suschkevitch à l'étude des codes rationnels complets, in: Automata, Languages and Programming, Lecture Notes in Comput. Sci. (1974) 342–350.
N. G. de Bruijn, On the factorization of cyclic groups, Indag. Math. 15 (1953) 258–264.
D. Derencourt, A three-word code which is not prefix-suffix composed, to appear in Theoret. Comput. Sci (1996) 15 pages.
D. Derencourt, personal communication (1996).
C. De Felice, A partial result about the factorization conjecture for finite variable-length codes, Discrete Math. 122 (1993) 137–152.
C. De Felice, An application of Hajós factorizations to variable-length codes, to appear in Theoret. Comput. Sci. (1996) 31 pages.
C. De Felice, A. Restivo, Some results on finite maximal codes, RAIRO Inform. Théor. Appl. 19 (1985) 383–403.
C. De Felice, C. Reutenauer, Solution partielle de la conjecture de factorisation des codes C. R. Acad. Sci. Paris 302 (1986) 169–170.
A. Ehrenfeucht, G. Rozenberg, Each regular code is included in a regular maximal code, RAIRO Inform. Théor. Appl. 20 (1985) 89–96.
S. Eilenberg, Automata, Languages and Machines, Vol. A, Academic Press (1974).
L. Fuchs, Abelian Groups, Pergamon Press (1960).
G. Hajós, Sur la factorisation des groupes abéliens, Casopis Pest. Mat. Fys. 74 (1950) 157–162.
R.W. Hamming, Coding and Information Theory, Prentice-Hall (1986).
J. Hopcroft, J. Ullman, Introduction to Automata Theory, Languages and Computation, Addison-Wesley (1979).
H. Jürgensen, S. Konstantinidis, Codes, in: Handbook of Formal Languages, G. Rozenberg, A. Salomaa, Eds, Springer-Verlag, to appear (1996).
R. König, Lectures on codes, Technical Report 93-3, University of Erlangen (1993) 66 pages.
M. Krasner, B. Ranulac, Sur une propriété des polynômes de la division du cercle, C. R. Acad. Sci. Paris 240 (1937) 397–399.
N. H. Lam, On codes having no finite completion, Lecture Notes in Comput. Sci. 775 (1994) 691–698.
N.H. Lam, A property of finite maximal codes, preprint (1996) 8 pages.
D. Lind, B. Marcus, Symbolic Dynamics and Coding, Cambridge University Press (1996).
A. A. Markov, An example of an independent system of words which cannot be included in a finite complete system (in Russian), Mat. Zametki 1 (1967) 87–90.
R.J. McEliece, The Theory of Information and Coding, Enc. of Math. 3, Addison-Wesley (1977).
F.J. McWilliams, N.J.A. Sloane, The Theory of Error-Correcting Codes, North-Holland (1977).
R. Montalbano, Local automata and completion, Lecture Notes in Comput. Sci. 665 (1993) 333–342.
D. Perrin, Completing biprefix codes, Theoret. Comput. Sci. 28 (1984) 329–336.
D. Perrin, Finite automata, in: Handbook of Theoretical Computer Science, vol. B, J. Van Leeuwen, Ed., Elsevier (1990) 2–57.
D. Perrin, M.-P. Schützenberger, Un problème élémentaire de la théorie de l'information, Théorie de l'Information, Colloques Internat. CNRS 276, Cachan (1977) 249–260.
A. Restivo, On codes having no finite completions, Discrete Math. 17 (1977) 309–316.
A. Restivo, S. Salemi, T. Sportelli, Completing codes, RAIRO Inform. Théor. Appl. 23 (1989) 135–147.
C. Reutenauer, Non commutative factorization of variable length codes, J. Pure Appl. Algebra 36 (1985) 157–186.
A. Salomaa, Jewels of Formal Language Theory, Washington, D.C.: Computer Science Press (1981).
A. D. Sands, On a conjecture og G. Hajós, Glasgow Math. J. 15 (1974) 88–89.
M.-P. Schützenberger, Une théorie algébrique du codage, Séminaire Dubreil-Pisot 1955–56, exposé no 15 (1955).
M.-P. Schützenberger, Sur certains sous-monoïdes libres, Bull. Soc. Math. France 93 (1965) 209–223.
M.-P. Schützenberger, On a question concerning certain free submonoids, J. Combin. Theory 1 (1966) 437–442.
P. Shor, A counterexample to the triangle conjecture, J. Combin. Theor. Ser. A 38 (1983) 110–112.
H.J. Shyr, Free Monoids and Languages, Hon Min Book Company, Taichung, second ed. (1991).
S. Szabo, personal communication to A. Restivo (1992).
J.H. Van Lindt, Introduction to Coding Theory, Graduate Texts in Math. 86, Springer-Verlag (1982).
L. Zhang, Every finite maximal code is a factorizing code, manuscript (1993) 19 pages.
L. Zhang, C.K. Gu, Two classes of factorizing codes — (p,p) codes and (4, 4) codes, In: Words, languages and combinatorics II, M. Ito, H. Jürgensen, Eds., World Scientific (1994) 477–483.
L. Zhang, Z. Shen, Completion of recognizable bifix codes, Theoret. Comput. Sci. 145 (1995) 345–355.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1996 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Bruyère, V., Latteux, M. (1996). Variable-length maximal codes. In: Meyer, F., Monien, B. (eds) Automata, Languages and Programming. ICALP 1996. Lecture Notes in Computer Science, vol 1099. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-61440-0_115
Download citation
DOI: https://doi.org/10.1007/3-540-61440-0_115
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-61440-1
Online ISBN: 978-3-540-68580-7
eBook Packages: Springer Book Archive