Abstract
The low-lying eigenvalues of a (sparse) hermitian matrix can be computed with controlled numerical errors by a conjugate gradient (CG) method. The algorithm presented here is accelerated by a factor 4–8 by alternating CG searches with exact diagonalizations in the subspace spanned by the numerically computed eigenvectors. The algorithm is numerically very stable and can be parallelized in an efficient way.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
G.H. Golub and C.F. v. Loan, Matrix computations, second edition, (The Johns Hopkins University Press, Baltimore, 1990).
J. Cullum and R.A. Willoughby, J. Comp. Phys. 44 (1981) 329.
T. Kalkreuter, hep-lat/9509071 (September 1995).
M. Geradin, J. Sound Vib. 19 (1971) 319; I. Fried, J. Sound Vib. 20 (1972) 333.
B. Bunk, K. Jansen, M. Lüscher, and H. Simma, internal DESY-report (1994).
T. Kalkreuter and H. Simma, Comp. Phys. Comm. 93 (1996) 33.
E. Polak, Comput. methods in optimization (Academic Press, New York, 1971).
W.H. Press, S.A. Teukolsky, W. T. Vetterling, and B.P. Flannery, Numerical recipes, 2nd ed. (Cambridge University Press, Cambridge, 1992).
H. Rutishauser, The Jacobi method for real symmetric matrices, in: J.H. Wilkinson and C. Reinsch, Linear Algebra (Springer-Verlag, Berlin, 1971).
M. Reed and B. Simon, Methods of modern mathematical physics, Vol. IV (Academic Press, New York, 1978).
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1996 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Kalkreuter, T., Simma, H. (1996). An accelerated conjugate gradient algorithm to compute low-lying eigenvalues of sparse hermitian matrices. In: Liddell, H., Colbrook, A., Hertzberger, B., Sloot, P. (eds) High-Performance Computing and Networking. HPCN-Europe 1996. Lecture Notes in Computer Science, vol 1067. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-61142-8_673
Download citation
DOI: https://doi.org/10.1007/3-540-61142-8_673
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-61142-4
Online ISBN: 978-3-540-49955-8
eBook Packages: Springer Book Archive