On the efficiency of superscalar and vector computer for some problems in scientific computing | SpringerLink
Skip to main content

On the efficiency of superscalar and vector computer for some problems in scientific computing

  • Contributed Papers
  • Conference paper
  • First Online:
SOFSEM '95: Theory and Practice of Informatics (SOFSEM 1995)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1012))

  • 141 Accesses

Abstract

Some details of arithmetic of two representatives of computers (a superscalar workstation and a vector uniprocessor) available in the Czech Republic for scientific computing are described. Consequently, their efficiency and precision on a set of linear algebraic tasks solved by different solvers is compared.

This work was supported in part by the Grant Agency of the Czech Republic with grant No. 201/93/0067.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Anderson, E., Bai, Z., Bischof, J., Demmel, J., Dongarra, J.J., Du Croz, J., Greenbaum, A., Hammarling, S., McKenney, A., Ostrouchov, S., Sorensen, D.: Lapack user's guide. SIAM Philadelphia, 1992

    Google Scholar 

  2. Berry, M., Cybenko, G., Larson, J.: Scientific benchmarks characterizations. Parallel Computing 17 (1991), 1173–1194.

    Google Scholar 

  3. Daydé, M.J., Duff, I.S.: Porting industrial codes and developing sparse linear solvers on parallel computers, Technical Report RAL 94-019, Rutheford Appleton Laboratory, 1994.

    Google Scholar 

  4. Demmel, J.W.: Trading off parallelism and numerical stability. In: Linear Algebra for Large-Scale and Real-Time Applications (M.S.Moonen et al. eds.), Kluwer Academic Publishers 1993, 49–68

    Google Scholar 

  5. Dongarra, J.J.: Performance of various computers using standard linear equations software. Technical Report CS-89-85, University of Tennessee, Update 1.2.1995

    Google Scholar 

  6. Dongarra, J.J., Bunch, J.R., Moler, C.B., Stewart, G.W.: Linpack user's Guide. SIAM, Philadelphia 1979

    Google Scholar 

  7. Liu, J.W.H.: The role of elimination trees in sparse factorization. SIAM J. Matrix Anal. Appl. 11 (1990), 134–172

    Article  Google Scholar 

  8. Ng, E.G., Peyton, B.W.: Block sparse Cholesky algorithms on advanced uniprocessor architectures, SIAM J. Sci. Comput. 14 (1993), 1034–1056.

    MathSciNet  Google Scholar 

  9. Pointer, L: Perfect: Performance evaluation for cost-effective tansformations. Report 2. CSRD Report No. 964, University of Illinois 1990

    Google Scholar 

  10. Strakoš, Z., Tůma, M.: Current trends in numerical linear algebra: from theory to practice. In: Proceedings of SOFSEM'94, 1994, 229–247

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Miroslav Bartosek Jan Staudek Jirí Wiedermann

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Tůma, M., Rozložník, M. (1995). On the efficiency of superscalar and vector computer for some problems in scientific computing. In: Bartosek, M., Staudek, J., Wiedermann, J. (eds) SOFSEM '95: Theory and Practice of Informatics. SOFSEM 1995. Lecture Notes in Computer Science, vol 1012. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-60609-2_37

Download citation

  • DOI: https://doi.org/10.1007/3-540-60609-2_37

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-60609-3

  • Online ISBN: 978-3-540-48463-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics