Efficient computation of the geodesic Voronoi diagram of points in a simple polygon | SpringerLink
Skip to main content

Efficient computation of the geodesic Voronoi diagram of points in a simple polygon

Extended abstract

  • Session 4. Chair: Marek Karpinski
  • Conference paper
  • First Online:
Algorithms — ESA '95 (ESA 1995)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 979))

Included in the following conference series:

Abstract

We present an O((n+k) log(n+k)) time algorithm for computing the geodesic Voronoi diagram of k points in a simple polygon of n vertices improving upon the previously known results. The method introduces a new approach to the construction of geodesic Voronoi diagrams by combining a sweep of the polygon and the merging step of a usual divide-and-conquer strategy.

Supported in part by the National Science Foundation under the Grant CCR-9309743, and by the Office of Naval Research under the Grant No. N00014-93-1-0272.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. B. Aronov. “On the geodesic Voronoi diagram of point sites in a simple polygon”, Algorithmica, 4 (1989), 109–140.

    Article  Google Scholar 

  2. F. Aurenhammer, “Voronoi diagrams: A survey of a fundamental geometric data structure,” ACM Comput. Survey, 23 1991, 345–405.

    Article  Google Scholar 

  3. Ta. Asano and Te. Asano, “Voronoi diagrams for points in a polygon,” in Discrete Algorithms & Complexity: Perspective in Computing, ed. D. S.Johnson, Academic Press, 1987, 51–64.

    Google Scholar 

  4. L. P. Chew, Constrained Delaunay triangulations, Algorithmica, 4 (1989), 97–108.

    Article  Google Scholar 

  5. S. Fortune, A sweepline algorithm for Voronoi diagrams, Algorithmica, 2 (1987), 153–174.

    Article  Google Scholar 

  6. L. J. Guibas, J. Hershberger, D. Leven, M. Sharir, and R.E. Tarjan, “Linear-time algorithms for visibility and shortest path problems inside triangulated simple polygons”, Algorithmica, 2 (1987), 209–233.

    Article  Google Scholar 

  7. L. J. Guibas and R. Sedgewick, “A dichromatic framework for balanced trees”, Proc. 19th IEEE Symp. on Foundations of Computer Science, 1978, 8–21.

    Google Scholar 

  8. J. Hershberger and S. Suri, “Efficient Computation of Euclidean Shortest Paths in the Plane”, 34th Symp. on Foundations of Computer Science, 1993, 508–517.

    Google Scholar 

  9. D. Kirkpatrick, “Optimal Search in Planar Subdivisions” SIAM J. Computing, Vol. 12, No 1, 1983, 28–35.

    Article  Google Scholar 

  10. D. T. Lee and A. K. Lin, “Generalized Delaunay triangulations for planar graphs”, Discrete Computational Geometry, 1 (1986),201–217.

    Google Scholar 

  11. D. T. Lee and F. P. Preparata, “Euclidean Shortest Paths in the Presence of Rectilinear Barriers”, Networks, 14 1984, 393–410.

    Google Scholar 

  12. J. S. B. Mitchell, “Shortest paths among obstacles in the plane”, Proc. 9th ACM Symp. on Comput. Geometry, May 1993, 308–317.

    Google Scholar 

  13. Preparata, F. P. and M. I. Shamos, Computational Geometry: an Introduction, Springer-Verlag, New York, NY 1985.

    Google Scholar 

  14. C. Wang and L. Schubert, “An optimal algorithm for constructing the Delaunay triangulation of a set of line segments”, Proc. 3rd ACM Symposium on Computational Geometry, 1987, 223–232.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Paul Spirakis

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Papadopoulou, E., Lee, D.T. (1995). Efficient computation of the geodesic Voronoi diagram of points in a simple polygon. In: Spirakis, P. (eds) Algorithms — ESA '95. ESA 1995. Lecture Notes in Computer Science, vol 979. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-60313-1_147

Download citation

  • DOI: https://doi.org/10.1007/3-540-60313-1_147

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-60313-9

  • Online ISBN: 978-3-540-44913-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics