Compartimentation in replicator models | SpringerLink
Skip to main content

Compartimentation in replicator models

  • 2. Origins of Life and Evolution
  • Conference paper
  • First Online:
Advances in Artificial Life (ECAL 1995)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 929))

Included in the following conference series:

Abstract

Recently a model formed by self-replicative units with catalytic capabilities evolving in an extended system has been presented. It has been shown that under particular conditions this model exhibits spatial compartimentation without any kind of membrane. In the framework of ALife, we suggest that this model can allow a global growth in the complexity of those models based on the hypothesis of the so-called RNA-world. However, this increase has got a limit defined by the impossibility of expressing the informational potentialities into functional complexity when a unique type of entity is involved in the system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Fleischaker, G.; Three models of a minimal cell. Colloquium on Prebiological Organization. University of Maryland. April 8–10, (1987)

    Google Scholar 

  2. Langton, Ch.; Artificial Life. In Artificial Life I pp 1–47, Ed. Ch. Langton, Addison Wesley, (1989).

    Google Scholar 

  3. Joyce, G.F. 1989. Nature 338, 217–224

    PubMed  Google Scholar 

  4. Doudna, J.A. & J.W Szostak. Nature 339 (1989) 519

    PubMed  Google Scholar 

  5. Cech, T.R. Nature 339, (1989) 507–508

    Google Scholar 

  6. Eigen, M. Naturwissenschaften 58 (1971) 465

    PubMed  Google Scholar 

  7. Dawkins, R. The Extended Phenotype. Freeman, San Francisco. (1982)

    Google Scholar 

  8. Hofbauer, J. & K. Sigmund. The theory of evolution and dynamical systems, Cambridge University Press. (1988)

    Google Scholar 

  9. Schuster, P. & K. Sigmund. Ber.Bunsenges.Phys.Chem. 89 (1985) 668

    Google Scholar 

  10. Hofbauer, J. & P. Schuster. Dynamics of Linear and Nonlinear Autocatalysis and Competition in Stochastic Phenomena and Chaotic Behavior in Complex Systems, Springer-Verlag, Berlin. (1984)

    Google Scholar 

  11. Skulachev, V.P. Antonie van Leeuwenhoek, 65 (1994) 271–284.

    Google Scholar 

  12. Streissler, C. Autocatalytic Networks Under Diffusion. Doctoral thesis, (UniversitÄt Wien, 1992)

    Google Scholar 

  13. Stalder, P.F., W. Schnabl, C.V. Forst & P. Schuster Bull. Math. Biol. 57 (1995) 21–61.

    Google Scholar 

  14. Eigen, M. & P. Schuster. The hypercycle — a principle of natural self-organization. Springer-Verlag, Berlin. 1979

    Google Scholar 

  15. Eigen, M., J. Mc Caskill & P. Schuster. Adv. Chem. Phys. 75 (1989) 149–263

    Google Scholar 

  16. Bresch, C., U. Niestert & D. Harnash. J.Theor.Biol. 85 (1980) 399.

    Google Scholar 

  17. Nuno, J.C., M.A. Andrade & F. Montero. Bull.Math.Biol. 55 (1993) 417

    Google Scholar 

  18. Turing, A.M. Philos. Trans.R.Soc.Lon.Ser. B 237 (1952) 37

    Google Scholar 

  19. Cross, M.C. & P.C. Hohenberg. Rev.Mod.Phys. 65 (1993) 851

    Google Scholar 

  20. Boerlijst, M.C. & P. Hogeweg. Physica D 48 (1991) 17

    Google Scholar 

  21. Cronhjort, M.B. & C. Blomberg J. Theor. Biol. 169 (1994) 31–449.

    Google Scholar 

  22. Chacón, P. & Nuno, J.C.; Physica D 81 (1995) 398

    Google Scholar 

  23. Kaneko, K. Physica D 37 (1989) 60

    Google Scholar 

  24. Ponnamperuma, C., Sagan, C. & Mariner, R. Nature 199 (1963) 222–238

    Google Scholar 

  25. Skulachev, V.P. Molecular mechanisms in bioenergetics (L. Ernster, ed.), Cap. 2. 37–73, Elsevier, Amsterdam (1994)

    Google Scholar 

  26. Luisi, P.L. & F.J. Varela. Origins of Life and Evolution of the Biosphere 19 (1989) 633–643

    Google Scholar 

  27. Andrade, M.A., J.C. Nuño, F. Morán, F. Montero & G.J. Mpitsos. Physica D. 63 (1993) 21

    Google Scholar 

  28. Schnabl, W., P.F. Stadler, C. Forst & P. Schuster. Physica D 48 (1991) 65

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Federico Morán Alvaro Moreno Juan Julián Merelo Pablo Chacón

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nuño, J.C., Chacón, P., Moreno, A., Morán, F. (1995). Compartimentation in replicator models. In: Morán, F., Moreno, A., Merelo, J.J., Chacón, P. (eds) Advances in Artificial Life. ECAL 1995. Lecture Notes in Computer Science, vol 929. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-59496-5_293

Download citation

  • DOI: https://doi.org/10.1007/3-540-59496-5_293

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-59496-3

  • Online ISBN: 978-3-540-49286-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics