The weighted graph bi-partitioning problem: A look at GA performance | SpringerLink
Skip to main content

The weighted graph bi-partitioning problem: A look at GA performance

  • Conference paper
  • First Online:
Parallel Problem Solving from Nature — PPSN III (PPSN 1994)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 866))

Included in the following conference series:

  • 201 Accesses

Abstract

We assess the performance of the GA on the weighted graph bi-partitioning problem which is an NP-complete problem. The assessment is done in two ways. First, the GA is compared with other search techniques and second, the fitness landscapes to be optimized are quantified in different ways and these data are related to the GA-performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. L. Davis, editor. Handbook of Genetic Algorithms. Van Nostrand Reinhold, New York, 1991.

    Google Scholar 

  2. S. Forrest and M. Mitchell. Relative building-block fitness and the building-block hypothesis.

    Google Scholar 

  3. M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the Theory of NP-completeness. W.H. Freeman and Company, San Francisco, 1979.

    Google Scholar 

  4. D. E. Goldberg. Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley, Reading, 1989.

    Google Scholar 

  5. J.J. Hopfield and D.W. Tank. Neural computations of decisions in optimization problems. Biological Cybernetics, 52:141–152, 1985.

    PubMed  Google Scholar 

  6. H. Inayoshi. Simulations and Optimizations of Networks/Systems. PhD thesis, Tsukuba University, 1992. In Japanese: Nettowa-ku sisutemu no simyure-syon to saitekika.

    Google Scholar 

  7. S.A. Kauffman. The Origins of Order: Self-Organization and Selection in Evolution. Oxford University Press, Oxford, 1993.

    Google Scholar 

  8. B.W. Kernighan and S. Lin. An efficient heuristic procedure for partitioning graphs. Bell Systems Technical Journal, 49(2):291–307, 1970.

    Google Scholar 

  9. R. Caruana L. Eshelman and D. Schaffer. Biases in the crossover landscape. In J. D. Schaffer, editor, Proceedings of the Third International Conference on Genetic Algorithms. Morgan Kaufmann, San Mateo, 1989.

    Google Scholar 

  10. Bernard Manderick, Mark de Weger, and Piet Spiessens. The genetic algorithm and the structure of the fitness landscape. In R. K. Belew and L. B. Booker, editors, Proceedings of the Fourth International Conference on Genetic Algorithms. Morgan Kaufmann, San Mateo, 1991.

    Google Scholar 

  11. R.H.J.M. Otten and L.P.P.P van Ginneken. The Annealing Algorithm. Kluwer Academic Publishers, Boston, 1989.

    Google Scholar 

  12. J. D. Schaffer, R. A. Caruana, L. J. Eshelman, and R. Das. A study of control parameters affecting online performance of genetic algorithms for function optimization. In J. D. Schaffer, editor, Proceedings of the Third International Conference on Genetic Algorithms. Morgan Kaufmann, San Mateo, 1989.

    Google Scholar 

  13. G. Syswerda. Uniform crossover in genetic algorithms. In J. D. Schaffer, editor, Proceedings of the Third International Conference on Genetic Algorithms. Morgan Kaufmann, San Mateo, 1989.

    Google Scholar 

  14. D. Whitley. The Genitor algorithm and selective pressure: Why rank-based allocation of reproductive trials is best. In J. D. Schaffer, editor, Proceedings of the Third International Conference on Genetic Algorithms. Morgan Kaufmann, San Mateo, 1989.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Yuval Davidor Hans-Paul Schwefel Reinhard Männer

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Inayoshi, H., Manderick, B. (1994). The weighted graph bi-partitioning problem: A look at GA performance. In: Davidor, Y., Schwefel, HP., Männer, R. (eds) Parallel Problem Solving from Nature — PPSN III. PPSN 1994. Lecture Notes in Computer Science, vol 866. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-58484-6_304

Download citation

  • DOI: https://doi.org/10.1007/3-540-58484-6_304

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-58484-1

  • Online ISBN: 978-3-540-49001-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics