Different learning algorithms for Neural Networks — A comparative study | SpringerLink
Skip to main content

Different learning algorithms for Neural Networks — A comparative study

  • Conference paper
  • First Online:
Parallel Problem Solving from Nature — PPSN III (PPSN 1994)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 866))

Included in the following conference series:

Abstract

Neural Networks (NN) are usually trained with gradient search algorithms. Alternative approaches like genetic algorithms (GA) have been proposed before with promising results. In this paper six different training algorithms for NN are compared — two of them based on GA. The algorithms were evaluated with data from practically relevant applications of the Siemens AG.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aktas, A et al.; Classification of Coarse Phonetic Categories in Continuous Speech: Statistical Classifiers vs. Temporal Flow Connectionist Network; Intern. Conf. on Acoustics, Speech, and Signal Processing; New Mexico 1990.

    Google Scholar 

  2. Heistermann, J.: A Parallel Hybrid Learning Approach to Artificial Neural Nets; Proceedings of the third IEEE Symposium on Parallel and Distri-buted Processing; Dallas 1991.

    Google Scholar 

  3. Mühlenbein,H.; Kindermann, J.: The dynamics of evolution and learning — towards genetic neural networks; in Pfeifer, R., Schreter, Z., Fogelman-Soulie, F., Steels, L. (Eds.): Connectionism in perspective; Elsevier 1989.

    Google Scholar 

  4. Nijhuis, J.A.G.; Spaanenburg, L.: NNSIM Internal Structure Reference Version 3.0; Technical Report IMS-TB-07/89; Institut für Mikroelektronik (IMS) Stuttgart 1989.

    Google Scholar 

  5. Press, W.H.; Flannery, B.P.; Teukolsky, S.A.; Vetterling, W.T.: Numerical Recipes in C; Cambridge University Press New York 1988.

    Google Scholar 

  6. Rumelhart, D.E.; Hinton, G.E.; Williams, R.J.: Learning Internal Repre-sentations by Error Propagation; in Rumelhart, D.E.; McCLelland, J.L. (Eds.): Parallel Distributed Processing Vol.1; MIT Press Cambridge Massachusetts 1986.

    Google Scholar 

  7. Schwefel,H.-P.: Numerische Optimierung von Computer-Modellen mittels der Evolutionsstrategie; Birkhäuser Basel und Stuttgart 1977.

    Google Scholar 

  8. Troll, A.: Optimierungsverfahren für die Lernphase bei Neuronalen Netzen; Diplomarbeit an der LMU München, Fachbereich Mathmatik; München 1991.

    Google Scholar 

  9. Whitley, D., Bogart, C.: The evolution of connectivity: Pruning neural networks using genetic algorithms; Proc. of the 3rd Intern. Joint Conf. on Neural Networks 1989.

    Google Scholar 

  10. Whitley, D., Hanson, T.: Optimizing neural networks using faster, more accurate genetic search; Proc. of the 3rd Intern. Conf. on Genetic Algorithms 1989.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Yuval Davidor Hans-Paul Schwefel Reinhard Männer

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Heistermann, J. (1994). Different learning algorithms for Neural Networks — A comparative study. In: Davidor, Y., Schwefel, HP., Männer, R. (eds) Parallel Problem Solving from Nature — PPSN III. PPSN 1994. Lecture Notes in Computer Science, vol 866. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-58484-6_282

Download citation

  • DOI: https://doi.org/10.1007/3-540-58484-6_282

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-58484-1

  • Online ISBN: 978-3-540-49001-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics