Abstract
We find some new lower bounds for the cardinality of mixed covering codes having length n=6, 7, or 8 and covering radius up to 3. Some exact values for these numbers are also computed.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
H.O.Hämäläinen, S.Rankinen, Upper bounds for football pool problems and mixed covering codes, J. Combin. Theory Ser.A56 (1991), 84–95.
I.Honkala, Lower bounds for binary covering codes, IEEE Trans. Inform. theory34 (1988), 326–329.
J.H. van Lint, Jr., G.J.M. van Wee, Generalized bounds on binary/ternary mixed packing and covering codes, J. Combin. Theory Ser.A57(1991), 130–134.
G.J.M. van Wee, Improved sphere bounds on the covering radius of codes, J. Combin. Theory Ser.A (1991), 117–129.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1994 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Kolev, E., Landgev, I. (1994). On some mixed covering codes of small length. In: Cohen, G., Litsyn, S., Lobstein, A., Zémor, G. (eds) Algebraic Coding. Algebraic Coding 1993. Lecture Notes in Computer Science, vol 781. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-57843-9_6
Download citation
DOI: https://doi.org/10.1007/3-540-57843-9_6
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-57843-7
Online ISBN: 978-3-540-48357-1
eBook Packages: Springer Book Archive