Decoding a bit more than the BCH bound | SpringerLink
Skip to main content

Decoding a bit more than the BCH bound

  • Bounds for Codes
  • Conference paper
  • First Online:
Algebraic Coding (Algebraic Coding 1993)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 781))

Included in the following conference series:

  • 139 Accesses

Abstract

The concept and characterization of ε-best rational approximations (ε-BRA) are given in this paper. And, by using this concept, a decoding algorithm for some cyclic codes is presented.

The conventional algorithms (Berlekamp-Massey, Continued Fraction, Extended Euclidean, ...) allows us to correct up to e BCH≤d−1/2 errors where d is the designed minimum distance of the cyclic code. However our algorithm will be able to correct more than d−1/2 errors in case that the true distance δ be greater than d.

The Expurged Golay Code is a very good example of the algorithm presented which allows us to correct up to three errors. This code G(23,11) is 3-error correcting but, by using the conventional algorithms we can only correct up to two errors.

This work was partially supported by Spanish Grant TIC91-0472.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. E.R.Berlekamp, Algebraic Coding Theory, McGraw-Hill, 1968.

    Google Scholar 

  2. P.Bours, J.C.M.Janssen, M. Van Asperdt, H.C.A.Van Tilborg, “Algebraic. Decoding Beyond e BCH of Some Binary Cyclic Codes, when e > e BCH, IEEE Trans., IT-36, pag. 214–222, 1990.

    Google Scholar 

  3. O.Egecioglu, Ç.K.Koç, J.Rifà, “ Fast computation of continued fractions”, Computer Math. Applic. vol 21, n. 2–3, pag. 167–169, 1991.

    MathSciNet  Google Scholar 

  4. M.Elia, “Algebraic Decoding of the (23,12,7) Golay Code”, IEEE Transactions on Information Theory, IT-33, n. 1, January 1987.

    Google Scholar 

  5. G.Feng, K.K.Tzeng, “Decoding Cyclic Codes up to Actual Minimum Distance Using Nonrecurrent Syndrome Dependence Relations”, IEEE Trans., IT-37, pag. 1716–1723, 1991.

    Google Scholar 

  6. J.H. van Lint, R.M.Wilson, “On the Minimum Distance of Cyclic Codes”, IEEE TRans. IT-32, pag. 23–41, 1986.

    Google Scholar 

  7. F.J.MacWilliams, N.J.A.Sloane. The Theory of Error-Correcting Code, North-Holland Publishing Company, 1977.

    Google Scholar 

  8. J.L.Massey, “Shift-register synthesis and BCH decoding”, IEEE Trans., IT-15, pag. 122–127, 1969.

    Article  Google Scholar 

  9. W.W.Peterson, “Encoding and error-correction procedures for Bose-Chaudhuri codes”, IEEE Trans. Info. Theory, IT-6, pag. 459–470, 1960.

    Google Scholar 

  10. I.S.Reed, R.A.Scholtz, “The fast decoding of Reed Solomon Codes using Fermat theoretic Transforms and Continued Fractions”, IEEE Trans. Inform. Theory, vol IT.24 pag. 100–106, 1978.

    Google Scholar 

  11. C. Roos, “A New Lower Bound for the Minimum Distance of a Cyclic Code”, IEEE Trans. IT-37, pag. 330–332, 1983.

    Google Scholar 

  12. Y.Sugiyama, M.Kasahara, S.Hirasawa, T.Namekawa, “ A method for solving key equation for decoding Goppa codes”, Inform. Contr., 21, pag. 87–99, 1975.

    Google Scholar 

  13. LL.R.Welch and R.A.Scholtz, “Continued Fractions and Berlekamp's Algorithm”, IEEE Trans. Inform. Theory, vol. IT-25 No.1, pag. 19–27, 1979

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

G. Cohen S. Litsyn A. Lobstein G. Zémor

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Coma, J.R. (1994). Decoding a bit more than the BCH bound. In: Cohen, G., Litsyn, S., Lobstein, A., Zémor, G. (eds) Algebraic Coding. Algebraic Coding 1993. Lecture Notes in Computer Science, vol 781. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-57843-9_30

Download citation

  • DOI: https://doi.org/10.1007/3-540-57843-9_30

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-57843-7

  • Online ISBN: 978-3-540-48357-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics