Stochastic control and large deviations | SpringerLink
Skip to main content

Stochastic control and large deviations

  • V. Signal Processing, Control, and Manufacturing Automation
  • Conference paper
  • First Online:
Future Tendencies in Computer Science, Control and Applied Mathematics (INRIA 1992)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 653))

Included in the following conference series:

Abstract

Large deviations theory is concerned with asymptotic estimates of probabilities of rare events associated with stochastic processes. A stochastic control approach to large deviations is outlined. Both problems of small random perturbations and large deviations from ergodicity are considered. For large deviations of Markov diffusion processes, PDE — viscosity solution methods are mentioned. Another stochastic control formulation, applicable to a broad range of large deviations problems is due to Dupuis and Ellis. This approach reduces many aspects of large deviations to the theory of weak convergence of probability measures.

Partially supported by NSF under grant DMS-900038, by AFOSR under grant F49620-92-J-0081DEF and by ARO under grant DAAL03-86-K-0171

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. R. Azencott: Grandes deviations et applications, Springer LNM No. 774, 1980.

    Google Scholar 

  2. T. Basar and P. Bernhard: H — Control and Related Minimax Design, Birkhauser, Boston, 1991.

    Google Scholar 

  3. M. D. Donsker and S. R. S. Varadhan: Asymptotic evaluation of certain Markov process expectations for large time, I, I, III, Comm. Pure Appl Math 28 (1975) 1–45, 279–301; 29 (1976) 389–461.

    Article  MATH  MathSciNet  Google Scholar 

  4. P. Dupuis and R. S. Ellis: A stochastic control approach to the theory of large deviations, preprint.

    Google Scholar 

  5. P. Dupuis and H. J. Kushner: Stochastic systems with small noise, analysis and simulation: a phase locked loop example, SIAM J. Appl Math. 47 (1987) 643–661.

    Article  MATH  MathSciNet  Google Scholar 

  6. R. S. Ellis: Entropy, Large Deviations and Statistical Mechanics, Springer Verlag, 1985.

    Google Scholar 

  7. W. H. Fleming and M. R. James: Asymptotic series and exit time probabilities, Annals of Probability (to appear).

    Google Scholar 

  8. W. H. Fleming and W. M. McEneaney: Risk sensitive control and differential games, Brown Univ. LCDS Report No. 92–1.

    Google Scholar 

  9. W. H. Fleming and W. M. McEneaney: Risk sensitive control with ergodic cost criteria, Proc. 31st IEEE CDC, 1992.

    Google Scholar 

  10. W. H. Fleming and H. M. Soner: Controlled Markov Processes and Viscosity Solutions, Springer Verlag, 1992.

    Google Scholar 

  11. W. H. Fleming and P. E. Souganidis: Asymptotic series and the method of vanishing viscosity, Indiana U. Math J. 38 (1989) 293–314.

    Article  MATH  MathSciNet  Google Scholar 

  12. M. I. Freidlin and A. D. Wentzell; Random Perturbations of Dynamical Systems, Springer Verlag, 1984.

    Google Scholar 

  13. K. Glover and J. C. Doyle: State-space formulae for all stabilizing controllers that satisfy an H — norm bound and relations to risk sensitivity, Systems Control Lett. 11 (1988) 167–172.

    Article  MATH  MathSciNet  Google Scholar 

  14. A. Isidori: Robust regulation of nonlinear systems, MTNS Abstracts, Kobe, Japan (1991).

    Google Scholar 

  15. D. H. Jacobson: Optimal stochastic linear systems with exponential criteria and their relation to deterministic differential games, IEEE Trans Automat. Control AC-18 (1973) 124–131.

    Article  Google Scholar 

  16. M. R. James: Asymptotic analysis of nonlinear stochastic risk-sensitive control and differential games, Math of Control, Signals and Syst. (to appear).

    Google Scholar 

  17. H. J. Kushner: Approximation and Weak Convergence Methods for Random Processes, MIT Press, 1984.

    Google Scholar 

  18. S. Parekh and J. Walrand: Quick simulation of excessive backlogs in networks of queues, IMA vols. in Math and Appl. No. 10, 439–470, Springer-Verlag, 1986.

    Google Scholar 

  19. T. Runolfsson: Stationary risk-sensitive LQG control and its relation to LQG and H-infinity control, Proc 29th IEEE CDC, 1990, 1018–1023.

    Google Scholar 

  20. Z. Schuss: Theory and Applications of Stochastic Differential Equations, Wiley, 1980.

    Google Scholar 

  21. S-J Sheu: Stochastic control and exit probabilities of jump processes, SIAM J. Control Optimiz. 23 (1985) 306–328.

    Article  MATH  MathSciNet  Google Scholar 

  22. B. Simon: Instantons, double wells and large deviations, Bulletin Amer Math Soc 8 (1983) 323–326.

    Article  MATH  Google Scholar 

  23. D. W. Stroock: An Introduction to Large Deviations, Springer-Verlag, 1984.

    Google Scholar 

  24. S. R. S. Varadhan: Large Deviations and Applications, SIAM, 1984.

    Google Scholar 

  25. P. Whittle: A risk sensitive maximum principle, Syst. Contr. Lett. 15 (1990) 183–192.

    Article  MATH  MathSciNet  Google Scholar 

  26. P. Whittle: A risk sensitive maximum principle: The case of imperfect state observation, IEEE Trans Auto, Control (to appear).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

A. Bensoussan J. -P. Verjus

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fleming, W.H. (1992). Stochastic control and large deviations. In: Bensoussan, A., Verjus, J.P. (eds) Future Tendencies in Computer Science, Control and Applied Mathematics. INRIA 1992. Lecture Notes in Computer Science, vol 653. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-56320-2_66

Download citation

  • DOI: https://doi.org/10.1007/3-540-56320-2_66

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-56320-4

  • Online ISBN: 978-3-540-47520-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics