Abstract
In this paper we survey the recent results and open questions about some graph layout problems.
This research was supported by the ESPRIT BRA Program of the EC under contract no. 7141, project ALCOM-II.
Preview
Unable to display preview. Download preview PDF.
References
D. Adolphson and T.C. Hu. Optimal linear ordering. SIAM J. on Applied Mathematics, 25(3):403–423, Nov 1973.
S.R. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy. On the intractability of approximation problems. Technical report, Manuscript, 1992.
S.F. Assman, G.W. Peck, M.M. Syslo, and J. Zak. The bandwith of caterpillars with hair of lengths 1 and 2. SIAM J. on Algebraic and Discrete Methods, 2:387–393, 1981.
J.L. Balcazar, J. Díaz, and K. Gabarró. Structural Complexity II. Springer-Verlag, Heidelberg, 1990.
D. Bruschi, D. Joseph, and P. Young. An structural overview of np optimization problems. Algorithms Review, 2(1):1–26, May 1991.
S.N. Bhatt and F.T. Leighton. A framework for solving VLSI graph layout problems. Jour. Computer and System Sciences, 28:300–343, 1984.
K.Y. Chen. Minimizing the bandwith of sparse symmetric matrices. C.ACM, 11:103–110, 1973.
M. Chung, F. Makedon, I.H. Sudborough, and J. Turner. Polynomial time algorithms for the min cut problem on degree restricted trees. In FOCS, volume 23, pages 262–271, Chicago, Nov 1982.
S.A. Cook. Towards a complexity theory of synchronous parallel computation. L'Enseignement Mathematique, 27:94–124, 1981.
J. Díaz. The δ-operator. In L. Budach, editor, Fundamentals of Computation Theory, pages 105–111. Akademie-Verlag, 1979.
J. Díaz, A. Gibbons, G. Pantziou, M.J. Serna, P. Spirakis, and J. Torán. Efficient parallel algorithms for optimal linear arrangement of trees. Technical report, University of Patras, 1992.
J. Díaz, A.M. Gibbons, M.S. Paterson, and J. Torán. The minsumcut problem. In F. Dehne, J.R. Sack, and N. Santoro, editors, Algorithms and Data Structure, volume 519, pages 65–79. Springer-Verlag, Lecture Notes in Computer Science, 1991.
S. Even and Y. Shiloach. NP-completeness of several arrangements problems. Technical report, TR-43 The Technion, Haifa, 1978.
F. Gavril. Some NP-complete problems on graphs. In Proc. 11th. Conf. on Information Sciences and Systems, pages 91–95, John Hopkins Univ., Baltimore, 1977.
M.R. Garey, R.L. Graham, D.S. Johnson, and D. Knuth. Complexity results for bandwidth minimization. SIAM J on Applied Mathematics, 34:477–495, Sept. 1978.
M.R. Garey and D.S. Johnson. Some simplified NP-complete graph problems. Theoretical Computer Science, 1:237–267, 1976.
M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness. Freeman, San Francisco, 1979.
M.C. Golumbic. Algorithmic graph theory and perfect graphs. Academic Press, New York, 1980.
A. Gibbons and W. Rytter. Efficient Parallel Algorithms. Cambridge University Press, Cambridge, 1988.
E. Gurari and I.H. Sudborough. Improved dynamic programming algorithms for the bandwith minimization and the mincut linear arrangement problem. Journal of Algorithms, 5:531–546, 1984.
L.H. Harper. Optimal numberings and isoperimetric problems on graphs. Journal of Combinatorial Theory, 1(3):385–393, 1966.
F. Harary. Problem 16. In M. Fiedler, editor, Graph Theory and Computing, page 161. Czech. Academy Sciences, 1967.
L.H. Harper. Chassis layout and isoperimetric problems. Technical Report SPS 37-66, vol II, Jet Propulsion Laboratory, Sept. 1970.
L.H. Harper. Stabilization and the edgesum problem. Ars Combinatoria, 4:225–270, Dec. 1977.
V. Kann. On the approximability of NP-complete optimization problems. Department of Numerical Analysis and Computing Science, Royal Institute of Technology, Stockholm, Sweden, 1992.
R. Karp and V. Ramachandran. Parallel algorithms for shared memory machines. In Jan van Leewen, editor, Handbook of Theoretical Computer Science, Vol. A, pages 869–942. Elsevier Science Publishers, 1990.
T. Lengauer. Black-white pebbles and graph separation. Acta Informatica, 16:465–475, 1981.
T. Lengauer. Upper and lower bounds on the complexity of the min-cut linear arrangements problem on trees. SIAM J. on Algebraic and Discrete Methods, 3:99–113, 1982.
B. Monien. The bandwith minimization problem for caterpillars with hair length 3 is NP-complete. Technical Report 17, Reihe theo. Infor., Paderborn, Sept. 1983.
R. Mahesh, C Pandu, and A. Srinivasan. On finding the minimum bandwith of interval graphs. Information and Computation, 95:218–224, 1991.
F. Makedon and I.H. Sudborough. Minimizing width in linear layouts. In J. Díaz, editor, Proc. 10th. Coll. on Automata, Languages and Programming, pages 478–490. Springer-Verlag, Lectures Notes in Computer Science, 1983.
M. Nanan and M. Kurtzberg. A review of the placement and quadratic assignment problems. SIAM Review, 14(2):324–341, 1972.
C. Papadimitriu. The NP-completeness of the bandwith minimization problem. Computing, 16:263–270, 1976.
A. Panconesi and D. Ranjan. Quantifiers and approximation. In Proceedings 22nd. Symp. on the Theory of Computing, pages 446–456. ACM, 1990.
C. Papadimitriu and K. Steiglitz. CombinatorialOptimizations, Algorithms and Complexity. Prentice Hall, 1982.
C. Papadimitriu and M. Yannakakis. Optimization, approximation, and complexity classes. Journal Computer and System Sciences, 43:425–440, 1991.
M.T. Shing and T. C. Hu. Computational complexity of layout problems. In T. Ohtsuki, editor, Layout design and verification, pages 267–294, Amsterdam, 1986. North-Holland.
Yossi Shiloach. A minimum linear arrangement algorithm for undirected trees. SIAM J. on Computing, 8(1):15–31, February 1979.
L. Stockmeyer and U. Vishkin. Simulation of parallel random access machines by circuits. SIAM Journal of Computing, 13:409–422, 1984.
A. Sangiovanni-Vincentelli. Automatic layout of integrated circuits. In Antognetti De Michelli, Sangiovanni-Vincentelli, editor, Design Systems for VLSI circuits, pages 113–195. Martinus Nijhoff Publishers, 1987.
Mihalis Yannakakis. A polynomial algorithm for the min cut linear arrangement of trees. In IEEE Symp. on Found. of Comp. Sci., volume 24, pages 274–281, Providence RI, Nov. 1983.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1992 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Díaz, J. (1992). Graph layout problems. In: Havel, I.M., Koubek, V. (eds) Mathematical Foundations of Computer Science 1992. MFCS 1992. Lecture Notes in Computer Science, vol 629. Springer, Berlin, Heidelberg . https://doi.org/10.1007/3-540-55808-X_2
Download citation
DOI: https://doi.org/10.1007/3-540-55808-X_2
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-55808-8
Online ISBN: 978-3-540-47291-9
eBook Packages: Springer Book Archive