Graph layout problems | SpringerLink
Skip to main content

Graph layout problems

  • Invited Lectures
  • Conference paper
  • First Online:
Mathematical Foundations of Computer Science 1992 (MFCS 1992)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 629))

  • 193 Accesses

Abstract

In this paper we survey the recent results and open questions about some graph layout problems.

This research was supported by the ESPRIT BRA Program of the EC under contract no. 7141, project ALCOM-II.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Adolphson and T.C. Hu. Optimal linear ordering. SIAM J. on Applied Mathematics, 25(3):403–423, Nov 1973.

    Article  MATH  MathSciNet  Google Scholar 

  2. S.R. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy. On the intractability of approximation problems. Technical report, Manuscript, 1992.

    Google Scholar 

  3. S.F. Assman, G.W. Peck, M.M. Syslo, and J. Zak. The bandwith of caterpillars with hair of lengths 1 and 2. SIAM J. on Algebraic and Discrete Methods, 2:387–393, 1981.

    Google Scholar 

  4. J.L. Balcazar, J. Díaz, and K. Gabarró. Structural Complexity II. Springer-Verlag, Heidelberg, 1990.

    MATH  Google Scholar 

  5. D. Bruschi, D. Joseph, and P. Young. An structural overview of np optimization problems. Algorithms Review, 2(1):1–26, May 1991.

    Google Scholar 

  6. S.N. Bhatt and F.T. Leighton. A framework for solving VLSI graph layout problems. Jour. Computer and System Sciences, 28:300–343, 1984.

    Article  MATH  MathSciNet  Google Scholar 

  7. K.Y. Chen. Minimizing the bandwith of sparse symmetric matrices. C.ACM, 11:103–110, 1973.

    Google Scholar 

  8. M. Chung, F. Makedon, I.H. Sudborough, and J. Turner. Polynomial time algorithms for the min cut problem on degree restricted trees. In FOCS, volume 23, pages 262–271, Chicago, Nov 1982.

    MathSciNet  Google Scholar 

  9. S.A. Cook. Towards a complexity theory of synchronous parallel computation. L'Enseignement Mathematique, 27:94–124, 1981.

    Google Scholar 

  10. J. Díaz. The δ-operator. In L. Budach, editor, Fundamentals of Computation Theory, pages 105–111. Akademie-Verlag, 1979.

    Google Scholar 

  11. J. Díaz, A. Gibbons, G. Pantziou, M.J. Serna, P. Spirakis, and J. Torán. Efficient parallel algorithms for optimal linear arrangement of trees. Technical report, University of Patras, 1992.

    Google Scholar 

  12. J. Díaz, A.M. Gibbons, M.S. Paterson, and J. Torán. The minsumcut problem. In F. Dehne, J.R. Sack, and N. Santoro, editors, Algorithms and Data Structure, volume 519, pages 65–79. Springer-Verlag, Lecture Notes in Computer Science, 1991.

    Google Scholar 

  13. S. Even and Y. Shiloach. NP-completeness of several arrangements problems. Technical report, TR-43 The Technion, Haifa, 1978.

    Google Scholar 

  14. F. Gavril. Some NP-complete problems on graphs. In Proc. 11th. Conf. on Information Sciences and Systems, pages 91–95, John Hopkins Univ., Baltimore, 1977.

    Google Scholar 

  15. M.R. Garey, R.L. Graham, D.S. Johnson, and D. Knuth. Complexity results for bandwidth minimization. SIAM J on Applied Mathematics, 34:477–495, Sept. 1978.

    Article  MATH  MathSciNet  Google Scholar 

  16. M.R. Garey and D.S. Johnson. Some simplified NP-complete graph problems. Theoretical Computer Science, 1:237–267, 1976.

    Article  MATH  MathSciNet  Google Scholar 

  17. M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness. Freeman, San Francisco, 1979.

    Google Scholar 

  18. M.C. Golumbic. Algorithmic graph theory and perfect graphs. Academic Press, New York, 1980.

    MATH  Google Scholar 

  19. A. Gibbons and W. Rytter. Efficient Parallel Algorithms. Cambridge University Press, Cambridge, 1988.

    MATH  Google Scholar 

  20. E. Gurari and I.H. Sudborough. Improved dynamic programming algorithms for the bandwith minimization and the mincut linear arrangement problem. Journal of Algorithms, 5:531–546, 1984.

    Article  MATH  MathSciNet  Google Scholar 

  21. L.H. Harper. Optimal numberings and isoperimetric problems on graphs. Journal of Combinatorial Theory, 1(3):385–393, 1966.

    MATH  MathSciNet  Google Scholar 

  22. F. Harary. Problem 16. In M. Fiedler, editor, Graph Theory and Computing, page 161. Czech. Academy Sciences, 1967.

    Google Scholar 

  23. L.H. Harper. Chassis layout and isoperimetric problems. Technical Report SPS 37-66, vol II, Jet Propulsion Laboratory, Sept. 1970.

    Google Scholar 

  24. L.H. Harper. Stabilization and the edgesum problem. Ars Combinatoria, 4:225–270, Dec. 1977.

    MATH  MathSciNet  Google Scholar 

  25. V. Kann. On the approximability of NP-complete optimization problems. Department of Numerical Analysis and Computing Science, Royal Institute of Technology, Stockholm, Sweden, 1992.

    Google Scholar 

  26. R. Karp and V. Ramachandran. Parallel algorithms for shared memory machines. In Jan van Leewen, editor, Handbook of Theoretical Computer Science, Vol. A, pages 869–942. Elsevier Science Publishers, 1990.

    Google Scholar 

  27. T. Lengauer. Black-white pebbles and graph separation. Acta Informatica, 16:465–475, 1981.

    Article  MATH  MathSciNet  Google Scholar 

  28. T. Lengauer. Upper and lower bounds on the complexity of the min-cut linear arrangements problem on trees. SIAM J. on Algebraic and Discrete Methods, 3:99–113, 1982.

    MATH  MathSciNet  Google Scholar 

  29. B. Monien. The bandwith minimization problem for caterpillars with hair length 3 is NP-complete. Technical Report 17, Reihe theo. Infor., Paderborn, Sept. 1983.

    Google Scholar 

  30. R. Mahesh, C Pandu, and A. Srinivasan. On finding the minimum bandwith of interval graphs. Information and Computation, 95:218–224, 1991.

    Article  MATH  MathSciNet  Google Scholar 

  31. F. Makedon and I.H. Sudborough. Minimizing width in linear layouts. In J. Díaz, editor, Proc. 10th. Coll. on Automata, Languages and Programming, pages 478–490. Springer-Verlag, Lectures Notes in Computer Science, 1983.

    Google Scholar 

  32. M. Nanan and M. Kurtzberg. A review of the placement and quadratic assignment problems. SIAM Review, 14(2):324–341, 1972.

    Article  MathSciNet  Google Scholar 

  33. C. Papadimitriu. The NP-completeness of the bandwith minimization problem. Computing, 16:263–270, 1976.

    Article  MathSciNet  Google Scholar 

  34. A. Panconesi and D. Ranjan. Quantifiers and approximation. In Proceedings 22nd. Symp. on the Theory of Computing, pages 446–456. ACM, 1990.

    Google Scholar 

  35. C. Papadimitriu and K. Steiglitz. CombinatorialOptimizations, Algorithms and Complexity. Prentice Hall, 1982.

    Google Scholar 

  36. C. Papadimitriu and M. Yannakakis. Optimization, approximation, and complexity classes. Journal Computer and System Sciences, 43:425–440, 1991.

    Article  Google Scholar 

  37. M.T. Shing and T. C. Hu. Computational complexity of layout problems. In T. Ohtsuki, editor, Layout design and verification, pages 267–294, Amsterdam, 1986. North-Holland.

    Google Scholar 

  38. Yossi Shiloach. A minimum linear arrangement algorithm for undirected trees. SIAM J. on Computing, 8(1):15–31, February 1979.

    Article  MATH  MathSciNet  Google Scholar 

  39. L. Stockmeyer and U. Vishkin. Simulation of parallel random access machines by circuits. SIAM Journal of Computing, 13:409–422, 1984.

    Article  MATH  MathSciNet  Google Scholar 

  40. A. Sangiovanni-Vincentelli. Automatic layout of integrated circuits. In Antognetti De Michelli, Sangiovanni-Vincentelli, editor, Design Systems for VLSI circuits, pages 113–195. Martinus Nijhoff Publishers, 1987.

    Google Scholar 

  41. Mihalis Yannakakis. A polynomial algorithm for the min cut linear arrangement of trees. In IEEE Symp. on Found. of Comp. Sci., volume 24, pages 274–281, Providence RI, Nov. 1983.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Ivan M. Havel Václav Koubek

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Díaz, J. (1992). Graph layout problems. In: Havel, I.M., Koubek, V. (eds) Mathematical Foundations of Computer Science 1992. MFCS 1992. Lecture Notes in Computer Science, vol 629. Springer, Berlin, Heidelberg . https://doi.org/10.1007/3-540-55808-X_2

Download citation

  • DOI: https://doi.org/10.1007/3-540-55808-X_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-55808-8

  • Online ISBN: 978-3-540-47291-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics