Preview
Unable to display preview. Download preview PDF.
References
Ta. Asano, Te. Asano, L.J. Guibas, J. Hershberger, and H. Imai. Visibility-polygon search and euclidean shortest paths. Algorithmica, 1(1):49–64, 1986.
H. Alt, R. Fleischer, M. Kaufmann, K. Mehlhorn, S. Näher, S. Schirra, and C. Uhrig. Approximate motion planning and the complexity of the boundary of the union of simple plane figures. In Proc. of the 6th ACM Symposium on Computational Geometry, pages 281–289, 1990.
M.J. Atallah, M.G. Goodrich, and M.H. Overmars. New output-sensitive methods for rectilinear hidden surface removal. Presented on a Workshop on Computational Geometry in Princeton, Oct. 1989.
A.V. Aho, J.E. Hopcroft, and J.D. Ullman. The Design and Analysis of Computer Algorithms. Addison-Wesley Publishing Company, 1974.
F. Aurenhammer. Voronoi diagrams — a survey of a fundamental geometric data structure. Technical Report B 90-09, Freie Universität Berlin, 1990. To appear in ACM Computing Surveys.
H. Alt and E. Welzl. Visibility graphs and obstacle-avoiding shortest paths. Zeitschrift für Operations Research, 32:145–164, 1988.
J. D. Boissonnat and M. Devillers-Teillaud. On the randomized construction of the delaunay tree. Technical Report 1140, INRIA Sophia-Antipolis, 1989.
J. D. Boissonnat, O. Devillers, R. Schott, M. Teillaud, and M. Yvinec. Applications of random sampling to on-line algorithms in computational geometry. Technical Report 1285, INRIA Sophia-Antipolis, 1990.
J. D. Boissonnat, O. Devillers, and M. Teillaud. A dynamic construction of higher order voronoi diagrams and its randomized analysis. Technical Report 1207, INRIA Sophia-Antipolis, 1990.
J.L. Bentley. Solutions to klee's rectangle problems. Unpublished manuscript, Carnegie-Mellon University, Department of Computer Science, 1977.
M. Bern. Hidden surface removal for rectangles. In Proc. of the 4th ACM Symposium on Computational Geometry, pages 183–192, 1988.
M. Bern. Hidden surface removal for rectangles. Personal Communication, Oct. 1989.
H. Baumgarten, H. Jung, and K. Mehlhorn. Dynamic point location in general subdivisions. To be presented at the ACM-SIAM Symposium on Discrete Algorithms, 1992.
N. Blum. On the single-operation worst-case time complexity of the disjoint set union problem. SIAM Journal on Computing, 15(4):1021–1024, 1986.
K.Q. Brown. Voronoi diagrams from convex hulls. Information Processing Letters, 9:223–228, 1979.
B. Chazelle and L.J. Guibas. Fractional cascading. Algorithmica, 1:133–196, 1986.
L.P. Chew. Planning the shortest path for a disc in o(n 2 log n) time. In Proc. of the 1st ACM Symposium on Computational Geometry, pages 214–220, 1985.
S.W. Cheng and R. Janardan. New results on dynamic planar point location. In Proc. of the 31th Annual IEEE Symposium on Foundations of Computer Science, volume 1, pages 96–105, 1990.
L.P. Chew and K. Kedem. High-clearance motion planning for a convex polygon among polygonal obstacles. Technical Report 184/90, Tel Aviv University, 1990.
K.L. Clarkson and P.W. Shor. Applications of random sampling in computational geometry, ii. Discrete and Computational Geometry, 4:387–421, 1989.
Y.J. Ching and R. Tamassia. Dynamization of the trapezoid method for planar point location. Proc. of the 7th ACM Symposium on Computational Geometry, 1991.
D. Dobkin and L. Snyder. On a general method for maximizing and minimizing among certain geometric problems. In Proc. of the 20th Annual IEEE Symposium on Foundations of Computer Science, pages 9–17, 1979.
H. Edelsbrunner, L.J. Guibas, and J. Stolfi. Optimal point location in a monotone subdivision. SIAM Journal on Computing, 15(2):317–340, 1986.
P. van Emde Boas, R. Kaas, and E. Zijlstra. Design and implementation of an efficient priority queue. Math. Systems Theory, 10:99–127, 1977.
H. Edelsbrunner and R. Seidel. Voronoi diagrams and arrangements. Discrete and Computational Geometry, 1:25–44, 1986.
R. Fleischer, K. Mehlhorn, G. Rote, E. Welzl, and C. Yap. On simultaneous inner and outer approximation of shapes. In Proc. of the 6th ACM Symposium on Computational Geometry, pages 216–224, 1990. Also available as ”Technical Report B 91-08, FU Berlin”.
S. Fortune. A sweepline algorithm for voronoi diagrams. Algorithmica, 2:153–174, 1987.
O. Fries. Suche in dynamischen planaren Unterteilungen der Ebene. PhD thesis, Universität des Saarlandes, 1989.
U. Fuchs, G. Rote, O. Schwarzkopf, and E. Welzl. Approximation of convex figures by pairs of rectangles. In Proc. of the 7th Annual Symposium on Theoretical Aspects of Computer Science, pages 240–249, 1990.
L.J. Guibas, D.E. Knuth, and M. Sharir. Randomized incremental construction of delaunay and voronoi diagrams. In Proc. of the 17th International Colloqium on Automata, Languages and Programming, pages 414–431, Warwick, 1990. LNCS 443.
S.K. Ghosh and D.M. Mount. An output sensitive algorithm for computing visibility graphs. Technical Report CS-TR-1874, University of Maryland, 1987.
R.H. Güting and T.H. Ottmann. New algorithms for special cases of the hidden line elimination problem. Computer Vision, Graphics and Image Processing, 40, 1987.
P.M. Gruber. Approximation of convex bodies. In Convexity and its Applications, pages 131–162. Birkhäuser Verlag, 1983.
M.T. Goodrich and R. Tamassia. Dynamic trees and dynamic point location. In Proc. of the ACM Symposium on Theory of Computing, 1991.
D. Halperin and M. Overmars. Efficient motion planning for an l-shaped object. In Proc. of the 5th ACM Symposium on Computational Geometry, pages 156–166, 1989.
R. Klein. Abstract voronoi diagrams and their applications (extended abstract). In H. Noltemeier, editor, Proc. of the Workshop on Computational Geometry and its Applications, pages 148–157, Würzburg, 1988. LNCS 333.
R. Klein. Voronoi diagrams in the moscow metric (extended abstract). In J. van Leeuwen, editor, Proc. of the Workshop on Graphtheoretic Concepts in Computer Science, pages 434–441, Amsterdam, 1988. LNCS 344.
R. Klein. Combinatorial properties of abstract voronoi diagrams. In M. Nagl, editor, Proc. of the Workshop on Graphtheoretic Concepts in Computer Science, pages 356–369, Rolduc, 1989. LNCS 411.
R. Klein. Concrete and Abstract Voronoi Diagrams. Springer Verlag, 1989. LNCS 400.
K. Kedem, R. Livne, J. Pach, and M. Sharir. On the union of jordan regions and collision-free motion amidst polygonal obstacles. Discrete and Computational Geometry, 1:59–71, 1986.
R. Kannan, L. Lovász, and H.E. Scarf. The shapes of polyhedra. Mathematics of Operations Research, 15:364–380, 1990.
S. Kapoor and S.N. Maheshwari. Efficient algorithms for euclidean shortest path and visibility problems with polygonal obstacles. In Proc. of the 4th ACM Symposium on Computational Geometry, pages 172–182, 1988.
R. Klein, K. Mehlhorn, and St. Meiser. Randomized incremental construction of abstract voronoi diagrams. Unpublished manuscript, 1991.
A.N. Kolmogorov. On the notion of algorithm. Uspehi Mat. Nauk., 8:175–176, 1953.
K. Kedem and M. Sharir. An automatic motion planning system for a convex polygonal mobile robot in 2-d polygonal space. In Proc. of the 4th ACM Symposium on Computational Geometry, pages 329–340, 1988.
D.T. Lee and F.P. Preparata. Location of a point in a planar subdivision and its applications. SIAM Journal on Computing, 6(3):594–606, 1977.
D.T. Lee and F.P. Preparata. Euclidean shortest paths in the presence of rectilinear barriers. Networks, 14:393–410, 1984.
R. Livne and M. Sharir. On intersection of planar jordan curves. Technical Report TR 153, N.Y. University, Courant Institute, 1985.
D. Leven and M. Sharir. Intersection and proximity problems and voronoi diagrams. In J. Schwartz and C.K. Yap, editors, Advances in Robotics, Volume 1, pages 187–228. Lawrence Erlbaum, 1986.
K. Mehlhorn. Data Structures and Algorithms. Springer Verlag, 1984.
K. Mehlhorn, St. Meiser, and C. ó'DÚnlaing. On the construction of abstract voronoi diagrams. Discrete and Computational Geometry, 6:211–224, 1991.
K. Mehlhorn and S. Näher. Dynamic fractional cascading. Algorithmica, 5:215–241, 1990.
K. Mehlhorn, St. Näher, and H. Alt. A lower bound on the complexity of the union-split-find problem. SIAM Journal on Computing, 17(6):1093–1102, 1988.
K. Mehlhorn, S. Näher, and C. Uhrig. Hidden line elimination for isooriented rectangles. Information Processing Letters, 35:137–143, 1990.
M.H. Overmars. Range searching in a set of line segments. In Proc. of the 1st ACM Symposium on Computational Geometry, pages 177–185, 1985.
T. Ottmann and D. Wood. The contour problem for polygons. Technical Report CS-84-33, University of Waterloo, 1984.
M.H. Overmars and E. Welzl. New methods for computing visibility graphs. In Proc. of the 4th ACM Symposium on Computational Geometry, pages 164–171, 1988.
C. ó'DÚnlaing and C.K. Yap. A ‘retraction’ method for planning the motion of a disc. Journal of Algorithms, 6:104–111, 1985.
F.P. Preparata and R. Tamassia. Fully dynamic techniques fo point location and transitive closure in planar structures (ea). In Proc. of the 29th Annual IEEE Symposium on Foundations of Computer Science, pages 558–567, 1988.
F.P. Preparata and R. Tamassia. Fully dynamic point location in a monotone subdivision. SIAM Journal on Computing, 18:811–830, 1989.
F. P. Preparata, J. S. Vitter, and M. Yvinec. Computation of the axial view of a set of isothetic parallelepipeds. Technical Report LIENS-88-1, Laboratoire d'Informatique, Ecole Normale Superieure, Paris, 1988.
H. Rohnert. Shortest paths in the plane with convex polygonal obstacles. Information Processing Letters, 23:71–76, 1986.
H. Rohnert. Time and space efficient algorithms for shortest paths between convex polygons. Information Processing Letters, 27:175–179, 1988.
H. Rohnert. Bewegungsplanung in der Ebene. PhD thesis, Universität des Saarlandes, 1989.
H. Rohnert. Moving a disk between polygons. Algorithmica, 6(2):182–191, 1991.
S. Schirra. Approximative Bewegungsplanungsverfahren. PhD thesis, Universität des Saarlandes. In preparation.
A. Schönhage. Storage modification machines. SIAM Journal on Computing, 9:490–508, 1980.
M.I. Shamos and D. Hoey. Closest point problems. In Proc. of the 16th Annual IEEE Symposium on Foundations of Computer Science, pages 151–162, 1975.
J.T. Schwartz and M. Sharir. Algorithmic motion planning in robotics. In Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity. Elsevier, 1990.
R.E. Tarjan. A class of algorithms which require nonlinear time to maintain disjoint sets. Journal of Computer and System Sciences, 18:110–127, 1979.
E. Welzl. Constructing the visibility graph for n line segments in o(n 2) time. Information Processing Letters, 20:167–171, 1985.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1992 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Fleischer, R. et al. (1992). Selected topics from computational geometry, data structures and motion planning. In: Monien, B., Ottmann, T. (eds) Data structures and efficient algorithms. Lecture Notes in Computer Science, vol 594. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-55488-2_20
Download citation
DOI: https://doi.org/10.1007/3-540-55488-2_20
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-55488-2
Online ISBN: 978-3-540-47103-5
eBook Packages: Springer Book Archive