Real space process algebra | SpringerLink
Skip to main content

Real space process algebra

  • Selected Presentations
  • Conference paper
  • First Online:
CONCUR '91 (CONCUR 1991)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 527))

Included in the following conference series:

Abstract

We extend the real time process algebra of [BB91] to real space-time process algebra, where actions are not just parametrized by a time coordinate, but also by three spatial coordinates. We describe two versions: classical space-time, where all equations are invariant under Galilei transformations, and relativistic space-time, where all equations are invariant under Lorentz transformations. The latter case in turn splits into two subcases: the temporal interleaving model and the true concurrency model.

Note: Partial support received by ESPRIT basic research action 3006, CONCUR, and by RACE contract 1046, SPECS. This document does not necessarily reflect the views of the SPECS consortium.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. J.C.M. Baeten & J.A. Bergstra, Real time process algebra, Formal Aspects of Computing 3 (2), 1991, pp. 142–188 (original version: report P8916, Programming Research Group, University of Amsterdam 1989).

    Google Scholar 

  2. J.C.M. Baeten & J.A. Bergstra, Process algebra with a zero object, in: Proc. CONCUR 90, Amsterdam (J.C.M. Baeten & J.W. Klop, eds.), Springer LNCS 458, 1990, pp. 83–98.

    Google Scholar 

  3. J.C.M. Baeten & W.P. Weijland, Process algebra, Cambridge Tracts in TCS 18, Cambridge University Press 1990.

    Google Scholar 

  4. J.A. Bergstra & J.W. Klop, Process algebra for synchronous communication, Inf. & Control 60, 1984, pp. 109–137.

    Google Scholar 

  5. J.A. Bergstra & J.W. Klop, Algebra of communicating processes with abstraction, TCS 37, 1985, pp. 77–121.

    Google Scholar 

  6. J.A. Bergstra & J.W. Klop, Process algebra: specification and verification in bisimulation semantics, in: Math. & Comp. Sci. II (M. Hazewinkel, J.K. Lenstra & L.G.L.T. Meertens, eds.), CWI Monograph 4, North-Holland, Amsterdam 1986, pp. 61–94.

    Google Scholar 

  7. M. Born, Die Relativitätstheorie Einsteins, Springer Verlag 1921.

    Google Scholar 

  8. [He88] M. Hennessy, Algebraic theory of processes, MIT Press 1988.

    Google Scholar 

  9. C.A.R. Hoare, Sequential communicating processes, Prentice Hall, 1985.

    Google Scholar 

  10. A.S. Klusener, Completeness in real time process algebra, report CS-R9106, CWI Amsterdam 1991. Extended abstract in this volume.

    Google Scholar 

  11. R. Milner, A calculus of communicating systems, Springer LNCS 92, 1980.

    Google Scholar 

  12. R. Milner, Communication and concurrency, Prentice Hall, 1989.

    Google Scholar 

  13. G. Peackock, A treatise of algebra, Cambridge 1830.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Jos C. M. Baeten Jan Frisco Groote

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Baeten, J.C.M., Bergstra, J.A. (1991). Real space process algebra. In: Baeten, J.C.M., Groote, J.F. (eds) CONCUR '91. CONCUR 1991. Lecture Notes in Computer Science, vol 527. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-54430-5_83

Download citation

  • DOI: https://doi.org/10.1007/3-540-54430-5_83

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-54430-2

  • Online ISBN: 978-3-540-38357-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics