Composition of two semi commutations | SpringerLink
Skip to main content

Composition of two semi commutations

  • Contributions
  • Conference paper
  • First Online:
Mathematical Foundations of Computer Science 1991 (MFCS 1991)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 520))

  • 131 Accesses

Abstract

We give a decidable necessary and sufficient condition on two semi commutations θ1, θ2 such that the composition of \(f_{\theta _1 }\) and \(f_{\theta _2 }\) is a semi commutation function. This characterization uses the commutation graphs of θ1 and θ2, and the non commutation graphs of θ1 and θ −12 . Then we deduce a decidable graphic characterization of confluent semi commutations.

This work is supported by the P.R.C. Mathématiques et Informatique, and by the EBRA project ALGEBRAIC and SYNTACTIC METHODS in COMPUTER SCIENCE.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. IJ.J. Aabersberg & G. Rozenberg. Theory of Traces. The. Comp. Sci. 60 (1986) 1–83.

    Google Scholar 

  2. J. Berstel & J. Sakarovich. Recents results in the theory of rational sets. Lect. Notes in Comp. Sci. 233 (1986) 15–28.

    Google Scholar 

  3. P.Cartier & D.Foata. Problèmes combinatoires de commutations et réarrangements. Lect. Notes in Math. 85 (1969).

    Google Scholar 

  4. M.Clerbout. Commutations partielles et familles de langages. Thèse Lille, 1984.

    Google Scholar 

  5. M. Clerbout & M. Latteux. Partial commutations and faithful rational transductions. The. Comp. Sci. 34 (1984) 241–254.

    Google Scholar 

  6. M.Clerbout & M.Latteux. On a generalization of partial commutations. in M.Arato, I.Katai, L.varga, eds, Prc.Fourth Hung. Computer Sci.Conf (1985) 15–24.

    Google Scholar 

  7. M. Clerbout & M. Latteux. Semi-commutations. Information and Computation 73 (1987) 59–74.

    Google Scholar 

  8. M. Clerbout. Compositions de fonctions de commutation partielle. RAIRO Inform. Theor. 23 (1986) 395–424.

    Google Scholar 

  9. M. Clerbout, M. Latteux & Y. Roos. Decomposition of partial commutations. ICALP'90 Lect. Notes in Comp. Sci. 443 (1990) 501–511.

    Google Scholar 

  10. M. Clerbout & D. Gonzalez. Decomposition of semi commutations. MFCS'90 Lect. Notes in Comp.Sci. 452 (1990) 209–216.

    Google Scholar 

  11. R. Cori & D. Perrin. Automates et commutations partielles. RAIRO Inform. Theor. 19 (1985) 21–32.

    Google Scholar 

  12. R. Cori. Partially abelian monoids. Invited lecture, STACS, Orsay (1986).

    Google Scholar 

  13. V.Diekert Combinatorics on Traces. Lect. Notes in Comp. Sci. 454 (1990)

    Google Scholar 

  14. V.Diekert, E.Ochmanski & K.Reinhardt. On confluent semi commutation systems — decidability and complexity results. To appear (ICALP'91).

    Google Scholar 

  15. M.Latteux. Rational cones and commutations. Machines, Languages and Complexity. J.Dassow and J.Kelemen eds., Lect. Notes in Comp.Sci. (1989) 37–54.

    Google Scholar 

  16. A.Mazurkiewicz. Concurrent program schemes and their interpretations. DAIMI PB 78, University of Aarhus (1977).

    Google Scholar 

  17. A. Mazurkiewicz. Traces, histories and graphs: instances of process monoids. Lect. Notes in Comp.Sci. 176 (1984) 115–133.

    Google Scholar 

  18. Y. Metivier. On recognizable subsets of free partially commutative monoids. Lect. Notes in Comp.Sci. 226 (1986) 254–264.

    Google Scholar 

  19. E. Ochmanski. Regular behaviour of concurrent systems. Bulletin of EATCS 27 (1985) 56–67.

    Google Scholar 

  20. D. Perrin. Words over a partially commutative alphabet. NATO ASI Series F12, Springer (1985) 329–340.

    Google Scholar 

  21. Y.Roos. Contribution à l'étude des fonctions de commutations partielles. Thèse, Université de Lille (1989).

    Google Scholar 

  22. W. Zielonka. Notes on asynchronous automata. RAIRO Inform. Theor. 21 (1987) 99–135.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Andrzej Tarlecki

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Roos, Y., Wacrenier, P.A. (1991). Composition of two semi commutations. In: Tarlecki, A. (eds) Mathematical Foundations of Computer Science 1991. MFCS 1991. Lecture Notes in Computer Science, vol 520. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-54345-7_84

Download citation

  • DOI: https://doi.org/10.1007/3-540-54345-7_84

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-54345-9

  • Online ISBN: 978-3-540-47579-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics