Abstract
We investigate the system obtained by adding an algebraic rewriting system R to the untyped lambda calculus. On certain classes of terms, called here “stable”, we prove that the resulting calculus is confluent if R is confluent, and terminating if R is terminating. The termination result has the corresponding theorems for several typed calculi as corollaries. The proof of the confluence result yields a general method for proving confluence of typed β reduction plus rewriting; we sketch the application to the polymorphic calculus F ω.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
H. P. Barendregt. The Lambda Calculus: Its Syntax and Semantics. North-Holland, Amsterdam. 1981, revised 1984.
F. Barbanera. Adding Algebraic Rewriting to the Calculus of Constructions: Strong Normalization Preserved. In Proceedings of the Second International Workshop on Conditional and Typed Rewriting Systems, Concordia University, 1990.
V. Breazu-Tannen. Conservative extensions of type theories. dissertation, Massachusetts Institute of Technology 1987.
V. Breazu-Tannen. Combining algebra and higher-order types. In Proceedings of the Third Annual Symposium on Logic in Computer Science, pp. 82–90. 1988.
V. Breazu-Tannen and J. Gallier. Polymorphic rewriting conserves algebraic strong normalization. Theoretical Computer Science, to appear.
V. Breazu-Tannen and J. Gallier. Polymorphic rewriting conserves algebraic confluence. Information and Computation, to appear.
V. Breazu-Tannen and A. R. Meyer. Computable values can be classical. In Proceedings of the Fourteenth Symposium on Principles of Programming Languages pp. 238–245, ACM, 1987.
T. Coquand and G. Huet. The Calculus of Constructions. Information and Control, v.76, no.2/3, pp. 95–120, 1988.
N. Dershowitz. Termination of rewriting. J. Symbolic Computation 3, pp. 69–116, 1987.
J-Y. Girard. Une extension de l'interprétation de Gödel à l'analyse, et son application à l'elimination des coupures dans l'analyse et la théorie des types. In Proc. Second Scandinavian Logic Symposium, ed. J.E. Fenstad. North-Holland, Amsterdam, 1971.
J-Y. Girard. Interprétation functionelle et élimination des coupures de l'arithmétique d'ordre supérieur. These D'Etat, Universite Paris VII, 1972.
G. Huet, J.J. Lévy. Call by need computations in non-ambiguous linear term rewriting systems. Rapport Laboria 359, INRIA, 1979
G. Huet, D. Oppen. Equations and rewrite rules: a survey. In Formal Languages: Perspectives and Open Problems, ed. R. Book. Academic Press, New York 1980.
J. W. Klop. Combinatory Reduction Systems. Mathematical Center Tracts 127, Amsterdam, 1980.
D. B. MacQueen. Using dependent types to express modular structure. In Conference Record of the Thirteenth Annual ACM Symposium on Principles of Programming Languages, pp. 277–286, 1986.
A. Middeldorp. Modular aspects of properties of term rewriting systems related to normal forms. In Proc. Third International Conference on Rewriting Techniques and Applications, Springer-Verlag LNCS 355, pp. 263–277, 1989.
G. Pottinger. The Church-Rosser theorem for the typed λ calculus with surjective pairing. Notre Dame Journal of Formal Logic, v.22, no. 3, pp. 264–268, 1981.
J. C. Reynolds. Towards a theory of type structure. In Proc. Colloque sur la Programmation, Springer-Verlag LNCS 19, pp. 408–425, 1974.
M. Rusinowitch. On termination of the direct sum of term rewriting systems. Information Processing Letters 26 pp.65–70, 1987.
Y. Toyama. On the Church-Rosser property for the direct sum of term rewriting systems. Journal of the ACM, v.34, no.1, pp.128–143, 1987.
Y. Toyama, J. W. Klop and H. Barendregt. Termination for the direct sum of left-linear term rewriting systems. In Proc. Third International Conference on Rewriting Techniques and Applications, Springer-Verlag LNCS 355, pp. 477–491, 1989.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1991 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Dougherty, D.J. (1991). Adding algebraic rewriting to the untyped lambda calculus (extended abstract). In: Book, R.V. (eds) Rewriting Techniques and Applications. RTA 1991. Lecture Notes in Computer Science, vol 488. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-53904-2_84
Download citation
DOI: https://doi.org/10.1007/3-540-53904-2_84
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-53904-9
Online ISBN: 978-3-540-46383-2
eBook Packages: Springer Book Archive