Abstract
Numerical simulation in physics, chemistry and engineering sciences, as for instance in fluid dynamics can be grouped in two classes: Continuum models and many-body-models. The mathematical approximative methods used are numerical grid methods, molecular dynamics, Monte Carlo methods etc. The more complicate the considered phenomenon and the more refined the model is, the higher is the demand for computational power and storage capacity. Future high performance computers will be parallel machines in order to be able to safisfy the users of large numerical applications. Appropriate parallel architectures in particular of the multiple-instruction-multiple-data type (MIMD) are discussed in view of the mapping requirements and varying subtask structure of the considered numerical applications. Two distributed memory architectures are presented in more detail: SUPRENUM, a German supercomputer project and the Erlangen multiprocessor architecture. The SUPRENUM prototype, based on the message-passing communication principle, will consist of 256 processors with a theoretical overall peak performance of 2 GFLOPS. The Erlangen architectural concept is characterized by interprocessor communication via distributed shared memory (DSM) and a functional hierarchy of 3 levels. This multiprocessor architecture adapts especially well to the mapping requirements of most numerical simulation problems. This is due to the fact that DSM architectures match efficiently the local communication needs of the considered problem classes.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
5. References
Händler, W.; Bode, A.; Fritsch, G.; Henning, W.; Volkert, J.: A tightly coupled and hierarchical multiprocessor architecture. Comp. Phys. Comm. 37 (1985), 87–93. North Holland Amsterdam.
Henning, W.; Volkert, J.: Programming EGPA systems. Proc. 5th Int. Conf. Distributed Computing Systems, Denver/Col., May 13–17, 1985, 552–559.
Bode, A.; Fritsch, G.; Händler, W.; Hofmann, F.; Volkert, J.: Multi-grid oriented computer architecture. Proc. 1985 Int. Conf. Parallel Processing, St. Charles, 81–95. IEEE Comp. Soc. 1985.
Volkert, J.; Henning, W.: Multigrid algorithms implemented on EGPA multiprocessor. Proc. 1985 Int. Conf. Parallel Processing, 799–805, IEEE Comp. Soc. Press 1985.
Trottenberg, U.: The SUPRENUM Projekct: Idea and Current State. SPEEDUP, Vol. 2, No. 1, 1988, 20–24. Universität Bern/Switzerland.
Behr, P.M.; Giloi, W.K.; Mühlenbein, H.: SUPRENUM: The German Supercomputer architecture — rationale and concepts. Proc. 1986 Int. Conf. Parallel Processing, Aug. 19–22, 1986, 567–575. IEEE Comp. Soc. Press 1986.
Seitz, C.L.: The cosmic cube. CACM Vol. 28, 22–33 (1985).
Pfister, G.F.; et al.: The IBM Research Parallel Processor Prototype (RP3). Proc. 1985, Int. Conf. Parallel Processing; IEEE Comp. Soc. Press, Washington D.C. (1985).
Regenspurg, G.: Hochleistungsrechner — Architekturprinzipien, Kap. 3.6, Mc Graw-Hill Book Comp. GmbH Hamburg (1987).
Händler, W.; Hofmann, F.; Schneider, H.J.: A General Purpose Array with a Broad Spectrum of Applications. In: Händler, W.: Computer Architecture, Informatik Fachberichte, Springer Verlag Berlin Heidelberg New York, 4, 311–35 (1976).
Händler, W.; Herzog, U.; Hofmann, F.; Schneider, H.J.: Multiprozessoren für breite Anwendungsgebiete: Erlangen General Purpose Array. GI/NTG-Fachtagung "Architektur und Anwendungsgebiete: Erlangen General Purpose Array. GI/NTG-Fachtagung "Architektur und Betrieb von Rechensystemen", Informatik-Fachberichte, Springer Verlag Berlin Heidelberg New York, 78, 195–208 (1984).
Händler, W.; Rohrer, H.: Thoughts on a Computer Construction Kit. Elektronische Rechenanlagen 22, 1, 3–13; 1980.
Händler, W.; Maehle, E.; Wirl, K.: DIRMU Multiprocessor Configurations, Proc. 1985 Int. Conf. on Parallel Processing, St. Charles 1985, 652–656. IEEE Comp. Soc. 1985.
Hoshino, T., et al.: Highly parallel processor array PAX for wide scientific applications. Proc. 1983 Int. Conf. Parallel Processing, 95–105. IEEE Comp. Soc. Press (1983).
Hoshino, T.: An invitation to the world of PAX. Computer, May 1986, 68–79.
Momoi, Sh.; Shimada, Sh.; Kobayashi, M.; Ishikawa, T.: Hierarchical array processor system (HAP). CONPAR 86, Aachen/F.R.Germany, Sept. 17–19 1986.
Maehle, E. and Wirl, K.: Parallel programs for numerical and signal processing on the Multiprocessor System DIRMU 25; in: Highly Parallel Computers (Ed.: G.L. Reijns, M.H. Barton), Elsevier Science Pub., IFIP 1987.
Hoshino, T.; Takenouchi, K.: Processing of the molecular dynamics model by the parallel computer PAX. Computer Phys. Comm. 31, 287–296 (1984).
Händler, W.; Fritsch, G.; Volkert, J.: Applications implemented on the Erlangen General Purpose Array. Proc. Parcella 84. Math. Forschung, Bd. 25. Akademie Verlag Berlin 1985.
Pfister, G.F.; Norton, V.A.: "Hot Spot" Contention and Combining in Multistage Interconnection Networks. IEEE Trans. Comp., Vol. C-34, 10, pp. 934–948; (1985).
Hackbusch, W.: Frequency Decomposition Method. 4. GAMM Workshop on Robust Multigrid Methods, Notes on Fluid Mechanics, Vieweg (1988).
Graves, R.: Numerical Aerodynamic Simulation-Creating the Digital Wind Tunnel. International Conference on Supercomputers, pp. 181–197,Paris (1984).
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1989 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Fritsch, G., Volkert, J. (1989). Multiprocessor systems for large numerical applications. In: Wolf, G., Legendi, T., Schendel, U. (eds) Parcella '88. Parcella 1988. Lecture Notes in Computer Science, vol 342. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-50647-0_117
Download citation
DOI: https://doi.org/10.1007/3-540-50647-0_117
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-50647-8
Online ISBN: 978-3-540-46062-6
eBook Packages: Springer Book Archive