Abstract
The aim of this article is to provide some arithmetical tools in order to study the local properties of digital hyperplanes.
With the help of the new general notion of configuration, we investigate the arrangement of the different combinatorial structures contained in a digital hyperplane. The regularity of this deployment is controlled by two arithmetical functions that we call code (I) and boundary (I) . By using these two simple tools, we prove that the local configurations in a functional digital hyperplane only depends on its normal vector and that their number is less than the size of the chosen neighborhood.
Chapter PDF
Similar content being viewed by others
References
J.M. Chassery & J. Vittone, Coexistence of Tricubes in Digital Naive Plane. 7th Conference on Discrete Geometry in Computer Imagery, Montpellier1997.
I. Debled-Renesson, Étude et reconnaissance des droites et plans discrets. Thèse de doctorat soutenue à l’Université Louis Pasteur de Strasbourg, 1995.
J. Françon, Sur la topologie d’un plan arithmétique. Theorical Computer Sciences 156, 1996.
J. Françon, J.M. Schramm & M. Tajine, Recognizing arithmetic straight lines and planes. 6th Conference on Discrete Geometry in Computer Imagery, Lyon, 1996.
J.P. Reveillés, Géométrie discréte, calcul en nombre entiers et algorithmique. Thèse de doctorat soutenue à l’;Université Louis Pasteur de Strasbourg, 1991.
J.P. Reveillés, Combinatorial pieces in digital lines and planes. Vision Geometry IV, vol 2573 SPIE 1995.
J.P. Reveillés & J. Yaacoub, Maximum area triangle operator for edge detection. Journal of electronic imaging6(4), 406–414, 1997.
J.M. Schramm, Coplanar Tricubes. 7th Conference on Discrete Geometry in Computer Imagery, Montpellier, 1997.
L. Vuillon, Local configurations in discrete planes. Bull. Belg. Math. Soc. to be published 1999.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 1999 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Gérard, Y. (1999). Local Configurations of Digital Hyperplanes. In: Bertrand, G., Couprie, M., Perroton, L. (eds) Discrete Geometry for Computer Imagery. DGCI 1999. Lecture Notes in Computer Science, vol 1568. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-49126-0_6
Download citation
DOI: https://doi.org/10.1007/3-540-49126-0_6
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-65685-2
Online ISBN: 978-3-540-49126-2
eBook Packages: Springer Book Archive