A Screening Technique for Prostate Cancer by Hair Chemical Analysis and Artificial Intelligence | SpringerLink
Skip to main content

A Screening Technique for Prostate Cancer by Hair Chemical Analysis and Artificial Intelligence

  • Conference paper
  • First Online:
Artificial Intelligence in Medicine (AIMDM 1999)

Abstract

Early detection of cancer may not only substantially reduce the overall health care costs but also reduce the long term morbidity and death from cancer. Although there are screening techniques available for prostate cancer, they all have practical limitations. In this paper, a new screening technique for prostate cancer is discussed. This technique applies artificial intelligence on the chemical analytical data of human scalp hair. Our study shows that it is possible to reveal relationship among hair trace elements and to establish correlation of multi element to prostate cancer etiology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Chai, K.S., Lee, H.P., Seow, A., Shanmugarathnam, K.: Trends in Cancer Incidence in Singapore 1968–1992. Singapore Cancer Registry Report, Vol. 4. Singapore Cancer Registry, Singapore (1996)

    Google Scholar 

  2. Montenegro, E.C., Baptista, G.P., De Castro Faria, L.V., Paschoa, A.S.: Correlation Factor for Hair Analysis by PIXE. Nucl. Instr. Methods. 168 (1980) 479–483

    Article  Google Scholar 

  3. Obrusnîk, O., Bencko, V.: INAA Study on Trace Elements in Hair of Three Selected Groups in Czechoslovakia. Radiochem. Radioanal. Lett. 38 (1979) 189–196

    Google Scholar 

  4. Wu, P., Straughan, R., Ong, I., Heng, K.L.: Development of a Process Diagnosis and Optimization Tool for Industrial Process: A Pattern Recognition/Neural Network Code on NSRC’s IBM SP2. In: Chandra, T., Leclair, S.R., Meech, J.A., Verma, B., Smith, M., Balachandran, B. (eds.): Australiasia-Pacific Forum on Intelligent Processing and Manufacturing of Materials. Australia (1997) 235–239

    Google Scholar 

  5. Chambers, J.M., Hastie, T.J. (eds.): Statistical Models in S.Wadsworth and Brooks Cole Advanced and Software. Pacific Grove, California (1992)

    Google Scholar 

  6. Nelder, J.A., Wedderburn, R.W.M.: Generalized Linear Models. J. Roy. Stat. Soc. 135 (1972) 370–384

    Article  Google Scholar 

  7. Milton, J.S., Arnold, J.C.: Introduction to Probability and Statistics, Principle and Applications for Engineering and the Computing Science. 2nd edn. McGraw-Hill, New York (1990)

    Google Scholar 

  8. Heng, K.L., Jin, H.M., Li, Y., Wu, P.: Computer Aided Design of NiMH Electrodes. J. Mater. Chem. (1999) (in press)

    Google Scholar 

  9. Afifi, A.A., Clark, V.: Computer Aided Multivariate Analysis. 2nd edn. Van Nostrand Reinhold, New York (1990)

    Google Scholar 

  10. Geladi, P., Kowalski, B.R.: Partial Least Squares Regression: A Tutorial. Anal. Chim. Acta. 185 (1990) 1–17

    Article  Google Scholar 

  11. Myers, R.H.: Classical and Modern Regression with Applications. Duxbury Press, Boston (1996)

    Google Scholar 

  12. Bryan, F.J.: Multivariate Statistical Methods: A Primer. 2nd edn. Chapman and Hall, London (1992)

    Google Scholar 

  13. Rasmussen, G.T., Ritter, G.L., Lowry, S.R., Isenhour, T.L.: Fisher Discriminant Functions for a Multilevel Mass Spectral Filter Network. J. Chem. Inf. Comput. Sci. 19(4) (1979) 255–259

    Article  Google Scholar 

  14. Fukunage, K.: Introduction to Statistical Pattern Recognition. Academic Press, Boston (1990)

    Google Scholar 

  15. Zhu, E.Y., Yang, P.Y., Deng, Z.W., Huang, B.L.: Orthogonalization Recurrence Selection Methods and its Applications. Chem. J. Chi. Uni. 14(11) (1993) 1518–1521

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wu, P., Heng, K.L., Yang, S.W., Chen, Y.F., Mohan, R.S., Lim, P.H.C. (1999). A Screening Technique for Prostate Cancer by Hair Chemical Analysis and Artificial Intelligence. In: Horn, W., Shahar, Y., Lindberg, G., Andreassen, S., Wyatt, J. (eds) Artificial Intelligence in Medicine. AIMDM 1999. Lecture Notes in Computer Science(), vol 1620. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-48720-4_41

Download citation

  • DOI: https://doi.org/10.1007/3-540-48720-4_41

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-66162-7

  • Online ISBN: 978-3-540-48720-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics