On the Complexity of Counting the Hilbert Basis of a Linear Diophantine System | SpringerLink
Skip to main content

On the Complexity of Counting the Hilbert Basis of a Linear Diophantine System

  • Conference paper
Logic for Programming and Automated Reasoning (LPAR 1999)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 1705))

Abstract

We investigate the computational complexity of counting the Hilbert basis of a homogeneous system of linear Diophantine equations. We establish lower and upper bounds on the complexity of this problem by showing that counting the Hilbert basis is #P-hard and belongs to the class #NP. Moreover, we investigate the complexity of variants obtained by restricting the number of occurrences of the variables in the system.

Research partially supported by NSF grants CCR-9610257 and CCR-9732041.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. A. Boudet, E. Contejean, and H. Devie. A new AC unification algorithm with a new algorithm for solving Diophantine equations. In Proceedings 5th LICS, Philadelphia (PA, USA), pages 289–299, June 1990.

    Google Scholar 

  2. D. Benanav, D. Kapur, and P. Narendran. Complexity of matching problems. Journal of Symbolic Computation, 3:203–216, 1987.

    MATH  MathSciNet  Google Scholar 

  3. F. Baader and T. Nipkow. Term rewriting and all that. Cambridge University Press, 1998.

    Google Scholar 

  4. A. Boudet. Competing for the AC-unification race. Journal of Automated Reasoning, 11(2):185–212, 1993.

    Article  MATH  MathSciNet  Google Scholar 

  5. E. Contejean and H. Devie. An efficient incremental algorithm for solving systems of linear Diophantine equations. Information and Computation, 113(1):143–172, 1994.

    Article  MATH  MathSciNet  Google Scholar 

  6. M. Clausen and A. Fortenbacher. Efficient solution of linear Diophantine equations. Journal of Symbolic Computation, 8(1–2):201–216, 1989.

    MathSciNet  MATH  Google Scholar 

  7. A. Durand, M. Hermann, and L. Juban. On the complexity of recognizing the Hilbert basis of a linear Diophantine system. In L. Pacholski, editor, Proceedings 24th MFCS, Szklarska Poreba (Poland), LNCS, Springer-Verlag, September 1999.

    Google Scholar 

  8. E. Domenjoud. Outils pour la déduction automatique dans les théories associative-commutatives. PhD thesis, Université Henri Poincaré, Nancy, France, September 1991.

    Google Scholar 

  9. E. Domenjoud. Solving systems of linear Diophantine equations: An algebraic approach. In A. Tarlecki, editor, Proceedings 16th MFCS, Kazimierz Dolny (Poland), LNCS 520, pages 141–150. Springer-Verlag, September 1991.

    Google Scholar 

  10. A. Durand. Personal communication, June 1999.

    Google Scholar 

  11. A. A. Elimam and S. E. Elmaghraby. On the reduction method for integer linear programs II. Discrete Applied Mathematics, 12(3):241–260, 1985.

    Article  MATH  MathSciNet  Google Scholar 

  12. F. Fages. Associative commutative unification. Journal of Symbolic Computation, 3(3):257–275, 1987.

    MATH  MathSciNet  Google Scholar 

  13. M. R. Garey and D. S. Johnson. Computers and intractability: A guide to the theory of NP-completeness. W.H. Freeman and Co, 1979.

    Google Scholar 

  14. P. Gordan. Ueber die Auflösung linearen Gleichungen mit reellen Coefficienten. Mathematische Annalen, 6:23–28, 1873.

    Article  MathSciNet  Google Scholar 

  15. D. Hilbert. Ueber die Theorie der algebraischen Formen. Mathematische Annalen, 36:473–534, 1890.

    Article  MathSciNet  Google Scholar 

  16. M. Hermann and P. G. Kolaitis. The complexity of counting problems in equational matching. Journal of Symbolic Computation, 20(3):343–362, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  17. M. Hermann and P. G. Kolaitis. Computational complexity of simultaneous elementary matching problems. In J. Wiedermann and P. Hájek, editors, Proceedings 20th MFCS, Prague (Czech Republic), LNCS 969, pages 359–370. Springer-Verlag, August 1995.

    Google Scholar 

  18. A. Herold and J. H. Siekmann. Unification in Abelian semigroups. Journal of Automated Reasoning, 3(3):247–283, 1987.

    Article  MATH  MathSciNet  Google Scholar 

  19. G. Huet. An algorithm to generate the basis of solutions to homogeneous linear Diophantine equations. Information Processing Letters, 7(3):144–147, 1978.

    Article  MATH  MathSciNet  Google Scholar 

  20. L. A. Hemaspaandra and H. Vollmer. The satanic notations: Counting classes beyond #P and other definitional adventures. SIGACT News, 26(1):2–13, March 1995.

    Article  Google Scholar 

  21. J.-P. Jouannaud and C. Kirchner. Solving equations in abstract algebras: A rule-based survey of unification. In J.-L. Lassez and G. Plotkin, editors, Computational Logic. Essays in honor of Alan Robinson, chapter 8, pages 257–321. MIT Press, Cambridge (MA, USA), 1991.

    Google Scholar 

  22. D. S. Johnson. A catalog of complexity classes. In J. van Leeuwen, editor, Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity, chapter 2, pages 67–161. North-Holland, Amsterdam, 1990.

    Google Scholar 

  23. L. Juban. Comptage de l’ensemble des éléments de la base de Hilbert d’un système d’équations diophantiennes linéaires. Technical Report 98-R-066, LORIA, 1998.

    Google Scholar 

  24. J.-L. Lambert. Une borne pour les générateurs des solutions entières positives d’une équation diophantienne linéaire. Compte-rendus de l’Académie des Sciences de Paris, 305(1):39–40, 1987.

    MATH  MathSciNet  Google Scholar 

  25. D. Lankford. Non-negative integer basis algorithms for linear equations with integer coefficients. Journal of Automated Reasoning, 5(1):25–35, 1989.

    Article  MATH  MathSciNet  Google Scholar 

  26. P. Lincoln and J. Christian. Adventures in associative-commutative unification. Journal of Symbolic Computation, 8(1–2):217–240, 1989.

    Article  MathSciNet  MATH  Google Scholar 

  27. C. H. Papadimitriou. On the complexity of integer programming. Journal of the Association for Computing Machinery, 28(4):765–768, 1981.

    MATH  MathSciNet  Google Scholar 

  28. C. H. Papadimitriou. Computational complexity. Addison-Wesley, 1994.

    Google Scholar 

  29. L. Pottier. Minimal solutions of linear Diophantine systems: bounds and algorithms. In R.V. Book, editor, Proceedings 4th RTA, Como (Italy), LNCS 488, pages 162–173. Springer-Verlag, April 1991.

    Google Scholar 

  30. A. Schrijver. Theory of linear and integer programming. John Wiley & Sons, 1986.

    Google Scholar 

  31. M. Stickel. A complete unification algorithm for associative-commutative functions. In Proceedings 4th IJCAI, Tbilisi (USSR), pages 71–82, 1975.

    Google Scholar 

  32. M. Stickel. A unification algorithm for associative-commutative functions. Journal of the Association for Computing Machinery, 28(3):423–434, 1981.

    MATH  MathSciNet  Google Scholar 

  33. S. Toda. On the computational power of PP and ⊕P. In Proceedings 30th FOCS, Research Triangle Park (NC, USA), pages 514–519, 1989.

    Google Scholar 

  34. S. Toda. Computational complexity of counting complexity classes. PhD thesis, Tokyo Institute of Technology, Department of Computer Science, Tokyo, Japan, 1991.

    Google Scholar 

  35. S. Toda and O. Watanabe. Polynomial-time 1-Turing reductions from #PH to #P. Theoretical Computer Science, 100(1):205–221, 1992.

    Article  MATH  MathSciNet  Google Scholar 

  36. L. G. Valiant. The complexity of computing the permanent. Theoretical Computer Science, 8(2):189–201, 1979.

    Article  MATH  MathSciNet  Google Scholar 

  37. L. G. Valiant. The complexity of enumeration and reliability problems. SIAM Journal on Computing, 8(3):410–421, 1979.

    Article  MATH  MathSciNet  Google Scholar 

  38. V. Zankó. #P-completeness via many-one reductions. International Journal of Foundations of Computer Science, 2(1):77–82, 1991.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hermann, M., Juban, L., Kolaitis, P.G. (1999). On the Complexity of Counting the Hilbert Basis of a Linear Diophantine System. In: Ganzinger, H., McAllester, D., Voronkov, A. (eds) Logic for Programming and Automated Reasoning. LPAR 1999. Lecture Notes in Computer Science(), vol 1705. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-48242-3_2

Download citation

  • DOI: https://doi.org/10.1007/3-540-48242-3_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-66492-5

  • Online ISBN: 978-3-540-48242-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics