Abstract
Segmentation based on color, instead of intensity only, pro- vides an easier distinction between materials, on the condition that ro- bustness against irrelevant parameters is achieved, such as illumination source, shadows, geometry and camera sensitivities. Modeling the phys- ical process of the image formation provides insight into the effect of different parameters on object color.
In this paper, a color differential geometry approach is used to detect material edges, invariant with respect to illumination color and imaging conditions. The performance of the color invariants is demonstrated by some real-world examples, showing the invariants to be successful in discounting shadow edges and illumination color.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Cumani, A.: Edge detection in multispectral images. CVGIP: Graphical Models and Image Processing 53 (1991) 40–51
Dev, A., van den Boomgaard, R.: Color and scale: The spatial structure of color images, Technical report, ISIS institute, Department of Computer Science, University of Amsterdam, Amsterdam, The Netherlands (1999)
Florack, L.M.J., Romeny, B.M.tH., Koenderink, J.J., Viergever, M.A.: Cartesian differential invariants in scale-space. Journal of Mathematical Imaging and Vision 3 (1993) 327–348
Gershon, R., Jepson, D., Tsotsos, J.K.: Ambient illumination and the determination of material changes. J. Opt. Soc. Am. A 3 (1986) 1700–1707
Gevers, T., Smeulders, A.W.M.: Color based object recognition. Pat. Rec. 32 (1999) 453–464
Hering, E.: Outlines of a Theory of the Light Sense. Harvard University Press, Cambridge, MS (1964)
Judd, D.B., Wyszecki, G.: Color in Business, Science, and Industry. Wiley, New York, NY (1975)
Koenderink, J.J., van Doorn, A.J.: Receptive field families. Biol. Cybern. 63 (1990) 291–297
Koenderink, J.J., Kappers, A.: Color Space. Utrecht University, The Netherlands (1998)
Mielenz, K.D., Eckerle, K.L., Madden, R.P., Reader, J.: New reference spectrophotometer. Appl. Optics 12 (1973) 1630–1641
Olver, P., Sapiro, G., Tannenbaum, A.: Differential invariant signatures and flows in computer vision: A symmetry group approach. In: Geometry-Driven Diffusion in Computer Vision, ter Haar Romeny BM (ed). Kluwer Academic Publishers, Boston (1994) 255–306
Shafer, S.A.: Using color to separate reflection components. Color Res. Appl. 10 (1985) 210–218
Wyszecki, G., Stiles, W.S.: Color Science: Concepts and Methods, Quantitative Data and Formulae. Wiley, New York, NY (1982)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 1999 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Geusebroek, JM., Dev, A., van den Boomgaard, R., Smeulders, A.W.M., Cornelissen, F., Geerts, H. (1999). Color Invariant Edge Detection. In: Nielsen, M., Johansen, P., Olsen, O.F., Weickert, J. (eds) Scale-Space Theories in Computer Vision. Scale-Space 1999. Lecture Notes in Computer Science, vol 1682. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-48236-9_43
Download citation
DOI: https://doi.org/10.1007/3-540-48236-9_43
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-66498-7
Online ISBN: 978-3-540-48236-9
eBook Packages: Springer Book Archive