Estimation of Numerical Dynamics Constants of a Weakly Nonlinear Neuron | SpringerLink
Skip to main content

Estimation of Numerical Dynamics Constants of a Weakly Nonlinear Neuron

  • Conference paper
  • First Online:
Parallel Processing and Applied Mathematics (PPAM 2001)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2328))

Abstract

The aim of the paper is to provide estimates of constants in the Fečkan Theorem and estimates guaranting pseudo orbit tracing property (POTP). These conditions constitute a theoretical foundation of weakly nonlinear neuron implementations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bielecki, A.: Dynamical properties of learning process of weakly nonlinear and nonlinear neurons, Nonlinear Analysis-Theory, Methods and Applications, Seria B: Real World Applications, vol. 2 (2001) 249–258

    MathSciNet  MATH  Google Scholar 

  2. Jabłoński, D.: The conjugacy between cascades generated a perturbated linear system and the Euler method of a flow, Applicationes Mathematicae-accepted (2001)

    Google Scholar 

  3. Jabłoński, D., Bielecki, A.: Numerical conditions for the Feckan Theorem and applications to the artificial neural networks, Proceedings of the Sixth National Conference on ”Application of Mathematics in Biology and Medicine”, Zawoja (2000) 57–60

    Google Scholar 

  4. Fečkan, M.: The relation between a flow and its discretization. Math. Slovaca 42, no. 1 (1992), 123–127

    MathSciNet  MATH  Google Scholar 

  5. Garay, B.: Discretization and some qualitative properties of ordinary differential equations about equilibria. Acta Math. Univ. Comenianae 62 (1993) 245–275

    MathSciNet  Google Scholar 

  6. Ombach, J.: The simplest shadowing. Ann. Polon. Math. 58 (1993) 253–258

    MathSciNet  MATH  Google Scholar 

  7. Palis, J., de Melo, W.: Geometric Theory of Dynamical Systems, Springer Verlag, New York (1982)

    Book  MATH  Google Scholar 

  8. Reinfelds, A.: The shadowing lemma in a metric space. Univ. Iagel. Acta Math. 35 (1997) 205–210

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bielecki, A., Jabłoński, D. (2002). Estimation of Numerical Dynamics Constants of a Weakly Nonlinear Neuron. In: Wyrzykowski, R., Dongarra, J., Paprzycki, M., Waśniewski, J. (eds) Parallel Processing and Applied Mathematics. PPAM 2001. Lecture Notes in Computer Science, vol 2328. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-48086-2_96

Download citation

  • DOI: https://doi.org/10.1007/3-540-48086-2_96

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-43792-5

  • Online ISBN: 978-3-540-48086-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics