Abstract
Quadrature filters are a well known method of low-level computer vision for estimating certain properties of the signal, as there are local amplitude and local phase. However, 2D quadrature filters suffer from being not rotation invariant. Furthermore, they do not allow to detect truly 2D features as corners and junctions unless they are combined to form the structure tensor. The present paper deals with a new 2D generalization of quadrature filters which is rotation invariant and allows to analyze intrinsically 2D signals. Hence, the new approach can be considered as the union of properties of quadrature filters and of the structure tensor. The proposed method first estimates the local orientation of the signal which is then used for steering some basis filter responses. Certain linear combination of these filter responses are derived which allow to estimate the local isotropy and two perpendicular phases of the signal. The phase model is based on the assumption of an angular band-limitation in the signal. As an application, a simple and efficient point-of-interest operator is presented and it is compared to the Plessey detector.
This work has been developed during M. Felsberg’s PhD studies in Kiel, and it has been supported by German National Merit Foundation and by DFG Graduiertenkolleg No. 357 (M. Felsberg) and by DFG Grant So-320-2-2 (G. Sommer).
Chapter PDF
Similar content being viewed by others
Keywords
References
Oppenheim, A., Lim, J.: The importance of phase in signals. Proc. of the IEEE 69 (1981) 529–541
Granlund, G.H., Knutsson, H.: Signal Processing for Computer Vision. Kluwer Academic Publishers, Dordrecht (1995)
Koenderink, J.J.: What is a “feature”? Journal of Intelligent Systems 3 (1993) 49–82
Krieger, G., Zetzsche, C.: Nonlinear image operators for the evaluation of local intrinsic dimensionality. IEEE Trans. on Image Processing 5 (1996) 1026–1041
Bülow, T., Sommer, G.: The hypercomplex signal-a novel approach to the multi-dimensional analytic signal. IEEE Trans. on Signal Processing 49 (2001) 2844–2852
Freeman, W.T., Adelson, E.H.: The design and use of steerable filters. IEEE Trans. on Pattern Analysis and Machine Intelligence 13 (1991) 891–906
Hahn, S.L.: Hilbert Transforms in Signal Processing. Artech House, Boston, London (1996)
Bülow, T., Sommer, G.: Algebraically extended representation of multi-dimensional signals. In: Proc. of the 10th Scand. Conf. on Image Analysis. (1997) 559–566
Sangwine, S.J.: Fourier-transforms of color images using quaternion or hypercomplex numbers. Electronic Letters 32 (1996) 1979–1980
Felsberg, M., Sommer, G.: The monogenic signal. IEEE Trans. on Signal Processing 49 (2001) 3136–3144
Stein, E., Weiss, G.: Introduction to Fourier Analysis on Euclidean Spaces. Princeton University Press, New Jersey (1971)
Bigün, J., Granlund, G.H.: Optimal orientation detection of linear symmetry. In: Proc. of the IEEE First Intern. Conference on Computer Vision. (1987) 433–438
Förstner, W., Gülch, E.: A fast operator for detection and precise location of distinct points, corners and centres of circular features. In: ISPRS Intercommission Workshop, Interlaken. (1987) 149–155
Jähne, B.: Digitale Bildverarbeitung. Springer-Verlag, Berlin (1997)
Förstner, W.: Statistische Verfahren für die automatische Bildanalyse und ihre Bewertung bei der Objekterkennung und-vermessung. Number 370 in C. Verlag der Bayerischen Akademie der Wissenschaften (1991)
Weickert, J.: A review of nonlinear diffusion filtering. In ter Haar Romeny, B., Florack, L., Koenderink, J., Viergever, M., eds.: Scale-Space Theory in Computer Vision. Volume 1252 of LNCS., Springer, Berlin (1997) 260–271
Felsberg, M., Sommer, G.: Scale adaptive filtering derived from the Laplace equation. In: 23. DAGM Symposium Mustererkennung, München. Volume 2191 of LNCS., Springer-Verlag, Heidelberg (2001) 124–131
Felsberg, M., Sommer, G.: A new extension of linear signal processing for estimating local properties and detecting features. In: 22. DAGM Symposium Mustererkennung, Kiel. Springer-Verlag, Heidelberg(2000) 195–202
Harris, C.G., Stephens, M.: A combined corner and edge detector. In: 4th Alvey Vision Conference. (1988) 147–151
Mokhtarian, F.: Image corner detection through curvature scale space. http://www.ee.surrey.ac.uk/Research/VSSP/demos/corners/ (2001) (Accessed 16 Nov 2001).
Schmid, C., Mohr, R., C., B.: Evaluation of interest point detectors. International Journal of Computer Vision 37 (2000) 151–172
Pauli, J.: Kiel appearance image library. http://www.ks.informatik.uni-kiel.de/~jpa/images.html (1998) (Accessed 22 Feb 2002).
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2002 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Felsberg, M., Sommer, G. (2002). Image Features Based on a New Approach to 2D Rotation Invariant Quadrature Filters. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds) Computer Vision — ECCV 2002. ECCV 2002. Lecture Notes in Computer Science, vol 2350. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-47969-4_25
Download citation
DOI: https://doi.org/10.1007/3-540-47969-4_25
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-43745-1
Online ISBN: 978-3-540-47969-7
eBook Packages: Springer Book Archive