Abstract
We study the multi-frame structure from motion problem when the camera translates on a plane with small baselines and arbitrary rotations. This case shows up in many practical applications, for example, in ground robot navigation. We consider the framework for small baselines presented in [8], in which a factorization method is used to compute the structure and motion parameters accurately, efficiently and with guaranteed convergence. When the camera translates on a plane, the algorithm in [8] cannot be applied because the estimation matrix drops rank, causing the equations to be no longer linear. In this paper, we show how to linearly solve those equations, while preserving the accuracy, speed and convergence properties of the non-planar algorithm. We evaluate the proposed algorithms on synthetic and real image sequences, and compare our results with those of the optimal algorithm. The proposed algorithms are very fast and accurate, have less than 0.3% outliers and work well for small-to-medium baselines and non-planar as well as planar motions.
Chapter PDF
Similar content being viewed by others
Keywords
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
CMU CIL-0001 castle image sequence. http://www.cs.cmu.edu/~cil/cil-ster.html~L.
R. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision. Cambridge, 2000.
D. Heeger and A. Jepson. Subspace methods for recovering rigid motion I: Algorithm and implementation. International Journal of Computer Vision, 7(2):95–117, 1992.
R. Kumar and A. Hanson. Sensitivity of the pose refinement problem to accurate estimation of camera parameters. In IEEE International Conference on Computer Vision, pages 365–369, 1990.
P. McLauchlan and D. Murray. A unifying framework for structure and motion recovery from image sequences. In International Conference on Computer Vision and Pattern Recognition, pages 314–20, 1995.
J. Oliensis. Rigorous bounds for two-frame structure from motion. In European Conference on Computer Vision, pages 184–195, 1996.
J. Oliensis. Structure from linear or planar motions. In International Conference on Computer Vision and Pattern Recognition, pages 335–42, 1996.
J. Oliensis. A multi-frame structure-from-motion algorithm under perspective projection. International Journal of Computer Vision, 34(2–3):163–192, 1999.
J. Oliensis and Y. Genc. Fast and accurate algorithms for projective multi-image structure from motion. IEEE Transactions on Pattern Analysis and Machine Intelligence, 23(6):546–559, 2001.
S. Soatto, R. Frezza, and P. Perona. Motion estimation via dynamic vision. IEEE Transactions on Automatic Control, 41(3):393–413, March 1996.
P. Sturm and B. Triggs. A factorization based algorithm for multi-image projective structure and motion. In European Conference on Computer Vision, pages 709–720, 1996.
R. Szeliski and S. B. Kang. Recovering 3D shape and motion from image streams using non-linear least squares. Journal of Visual Communication and Image Representation, 5(1):10–28, 1994.
C. Tomasi and T. Kanade. Shape and motion from image streams under orthography. International Journal of Computer Vision, 9(2):137–154, 1992.
B. Triggs. Factorization methods for projective structure and motion. In International Conference on Computer Vision and Pattern Recognition, pages 845–51, 1996.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2002 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Vidal, R., Oliensis, J. (2002). Structure from Planar Motions with Small Baselines. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds) Computer Vision — ECCV 2002. ECCV 2002. Lecture Notes in Computer Science, vol 2351. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-47967-8_26
Download citation
DOI: https://doi.org/10.1007/3-540-47967-8_26
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-43744-4
Online ISBN: 978-3-540-47967-3
eBook Packages: Springer Book Archive