Machine Learning and Inductive Logic Programming for Multi-agent Systems | SpringerLink
Skip to main content

Machine Learning and Inductive Logic Programming for Multi-agent Systems

  • Chapter
  • First Online:
Multi-Agent Systems and Applications (ACAI 2001)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 2086))

Included in the following conference series:

Abstract

Learning is a crucial ability of intelligent agents. Rather than presenting a complete literature review, we focus in this paper on important issues surrounding the application of machine learning (ML) techniques to agents and multi-agent systems (MAS). In this discussion we move from disembodied ML over single-agent learning to full multiagent learning. In the second part of the paper we focus on the application of Inductive Logic Programming, a knowledge-based ML technique, to MAS, and present an implemented framework in which multi-agent learning experiments can be carried out.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. E. Alonso and D. Kudenko. Machine learning techniques for adaptive logic-based multi-agent systems. In UKMAS’ 99, Bristol, UK, 1999.

    Google Scholar 

  2. T. Balch. Behavioral diversity as multiagent cooperation. In SPIE’99 Workshop on Multiagent Systems, 1999.

    Google Scholar 

  3. T. Balch. Hierarchic social entropy: an information theoretic measure of robot team diversity. Autonomous Robots, July 2000.

    Google Scholar 

  4. C.H. Bryant and S.H. Muggleton. Closed loop machine learning. Technical Report YCS 330, University of York, Department of Computer Science, Heslington, York, YO10 5DD, UK., 2000.

    Google Scholar 

  5. W. Daelemans, A.V.D. Bosch, and J. Zavrel. Forgetting exceptions is harmful in language learning. Machine Learning, 34:11, 1999.

    Google Scholar 

  6. T. Dietterich and N. Flann. Explanation-based learning and reinforcement learning. In Proceedings of the Twelfth International Conference on Machine Learning, pages 176–184, 1995.

    Google Scholar 

  7. S. Džeroski, L. De Raedt, and H. Blockeel. Relational reinforcement learning. In D. Page, editor, The Eighth International Conference ILP-98, pages 11–22, Madison, Wisconsin, USA, 1998. Springer-Verlag.

    Google Scholar 

  8. K. Furukawa, editor. The First International Conference on Discovery Science, LNCS, Fukuoka, Japan, 1998. Springer-Verlag.

    Google Scholar 

  9. G. Gilbert and R. Conte (Eds.). Artificial Societies: The Computer Simulation of Social Life. UCL Press, London, 1995.

    Google Scholar 

  10. D.F. Gordon. Asimovian adaptive agents. Journal of Artificial Intelligence Research, 13:95–153, 2000.

    MathSciNet  MATH  Google Scholar 

  11. N. Jacobs, K. Driessens, and L. De Raedt. Using ilp systems for verification and validation of multi-agent systems. In D. Page, editor, The Eighth International Conference ILP-98, pages 11–22, Madison, Wisconsin, USA, 1998. Springer-Verlag.

    Google Scholar 

  12. L. Kaelbling, M. Littman, and A. Moore. Reinforcement learning: A survey. Journal of Artificial Intelligence Research, 4:237–285, 1996.

    Google Scholar 

  13. D. Kazakov. Natural Language Applications of Machine Learning. PhD thesis, Czech Technical University, Prague, Czech Republic, January 2000.

    Google Scholar 

  14. D. Kazakov, L. Mallabone, and S. Routledge. Implementing natural selection and symbolic learning in a multi-agent environment. Manuscript.

    Google Scholar 

  15. D. Kazakov and S. Manandhar. Unsupervised learning of word segmentation rules with genetic algorithms and inductive logic programming. Machine Learning, 2001. Forthcomming.

    Google Scholar 

  16. H. Kitano, Y. Kuniyoshi, I. Noda, M. Asada, H. Matsubara, and E. Osawa. Robocup: A challenge problem for AI. AI Magazine, 18:73–85, 1997.

    Google Scholar 

  17. M. Klusch (Ed.). Intelligent Information Agents. Springer-Verlag, 1999.

    Google Scholar 

  18. D. Kudenko and E. Alonso. Logic-based multi-agent systems for conflict simulations. In UKMAS’ 00, Oxford, UK, 2000.

    Google Scholar 

  19. D. Lorenzo and R.P. Otero. Using an ilp algorithm to learn logic programs for reasoning about actions. In J. Cussens and A. Frisch, editors, Work-in-Progress Reports of ILP-2000, pages 163–179, London, UK, 2000.

    Google Scholar 

  20. T. Matsui, N. Inuzuka, and H. Seki. A proposal for inductive learning agent using first-order logic. In J. Cussens and A. Frisch, editors, Work-in-Progress Reports of ILP-2000, pages 180–193, London, UK, 2000.

    Google Scholar 

  21. R.S. Michalski, I. Bratko, and M. Kubat, editors. Machine Learning and Data Mining-Methods and Applications. Wiley, 1998.

    Google Scholar 

  22. T. Mitchell, R. Keller, and S. Kedar-Cabelli. Explanation-based generalization: A unifying view. Machine Learning, 1:4–80, 1986.

    Google Scholar 

  23. T.M. Mitchell. Machine Learning. McGraw-Hill, 1997.

    Google Scholar 

  24. R.J. Mooney and M.E. Califf. Induction of first-order decision lists: Results on learning the past tense of English verbs. Journal of Artificial Intelligence Research, June 1995.

    Google Scholar 

  25. S. Muggleton. Personal communication.

    Google Scholar 

  26. S. Muggleton. Inverse entailment and Progol. New Generation Computing, 13:245–286, 1995.

    Article  Google Scholar 

  27. S. Muggleton. Learning from positive data. Machine Learning, 1998.

    Google Scholar 

  28. S. Muggleton and M. Bain. Analogical prediction. In Proc. of the 9th International Workshop on Inductive Logic Programming (ILP-99), pages 234–244, Berlin, 1999. Springer-Verlag.

    Google Scholar 

  29. S. Muggleton and W. Buntine. Machine invention of first-order predicates by inverting resolution. In Proceedings of the Fifth International Conference of Machine Learning, pages 339–352. Morgan Kaufmann, San Mateo, CA, 1988.

    Google Scholar 

  30. S. Muggleton and C. Feng. Efficient induction of logic programs. In Proceedings of the First Conference on Algorithmic Learning Theory, Tokyo, 1990. Ohmsha.

    Google Scholar 

  31. S. Natarajan. Imprecise and Approximate Computations. Kluwer, 1995.

    Google Scholar 

  32. L. Parker. Heterogeneous Multi-Robot Cooperation. PhD thesis, MIT Department of Electrical Engineering and Computer Science, 1994.

    Google Scholar 

  33. G. Plotkin. A note of inductive generalization. In B. Meltzer and D. Mitchie, editors, Machine Intelligence 5, pages 153–163. Edinburgh University Press, 1970.

    Google Scholar 

  34. F. Provost and D. Hennessy. Scaling up: Distributed machine learning with cooperation. In Proceedings of the Thirteenth National Conference on Artificial Intelligence (AAAI #x2019;96), 1996.

    Google Scholar 

  35. J. Quinlan. Learning logical definitions from relations. ML, 5:239–266, 1990.

    Google Scholar 

  36. M. Reid and M. Ryan. Using ilp to improve planning in hierarchical reinforcement learning. In J. Cussens and A. Frisch, editors, The Tenth International Conference ILP-2000, pages 174–190, London, UK, 2000. Springer-Verlag.

    Google Scholar 

  37. S. Sen and G. Weiss. Learning in multi-agent systems. In G. Weiss, editor, Multi-Agent Systems: A modern Approach to Distributed AI, pages 259–298. MIT Press, Cambridge, MA, 1999.

    Google Scholar 

  38. L. Steels. Cooperation between distributed agents through self-organization. In Y. Demazeau and J.-P. Mueller, editors, Decentralized AI-Proceedings of the First European Workshop on Modelling Autonomous Agents in a Multi-Agent World (MAAMAW-89), pages 175–196. Elsevier Science, Amsterdam, 1990.

    Google Scholar 

  39. G. Tesauro. Temporal difference learning and td-gammon. Communications of the ACM, 38(3):58–68, 1995.

    Article  Google Scholar 

  40. C.A. Thompson, M.E. Califf, and R.J. Mooney. Active learning for natural language parsing and information extraction. In Proc. of the Sixteenth International Machine Learning Conference, Bled, Slovenia, 1999.

    Google Scholar 

  41. URL: http://verbmobil.dfki.de/.

  42. J. Vidal and E. Durfee. Agents learning about agents: A framework and analysis. In Working Notes of the AAAI-97 workshop on Multiagent Learning, pages 71–76, 1997.

    Google Scholar 

  43. C. Watkins and P. Dayan. Q learning. Machine Learning, 8:279–292, 1992.

    MATH  Google Scholar 

  44. G. Weiss. Learning to coordinate actions in multiagent systems. In Proceedings of the 13th International Joint Conference on Artificial Intelligence (IJCAI 93), pages 311–316, 1993.

    Google Scholar 

  45. G. Weiss and P. Dillenbourg. What is #x2018;multi’ in multiagent learning? In P. Dillenbourg, editor, Collaborative Learning. Cognitive and Computational Approaches, pages 64–80. Pergamon Press, 1999.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kazakov, D., Kudenko⋆, D. (2001). Machine Learning and Inductive Logic Programming for Multi-agent Systems. In: Luck, M., Mařík, V., Štěpánková, O., Trappl, R. (eds) Multi-Agent Systems and Applications. ACAI 2001. Lecture Notes in Computer Science(), vol 2086. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-47745-4_11

Download citation

  • DOI: https://doi.org/10.1007/3-540-47745-4_11

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42312-6

  • Online ISBN: 978-3-540-47745-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics