Abstract
We show for the first time how to implement cryptographic protocols based on class groups of algebraic number fields of degree > 2. We describe how the involved objects can be represented and how the arithmetic in class groups can be realized efficiently. To speed up the arithmetic we present our new method for multiplication of ideals. Furthermore we show how to generate cryptographically suitable algebraic number fields. Besides, we give a numerical example and analyse our run times.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
E. Bach. Explicit bounds for primality testing and related problems. Math. Comp., 55:355–380, 1990.
Z.I. Borevic and I.R. Safarevic. Number theory. Academic Press, New York, 1966.
J. Buchmann. A generalization of Voronoi’s unit algorithm I and II. Journal of Number Theory, 20:177–209, 1985.
J. Buchmann. The computation of the fundamental unit of totally complex quartic orders. Mathematics of Computation, 48(177):39–54, January 1987.
J. Buchmann. On the period length of the generalized Lagrange algorithm. Journal of Number Theory, 26:31–37, 1987.
J. Buchmann, I. Biehl, S. Hamdy, and A. Meyer. Cryptographic protocols based on the intractability of extracting roots and computing discrete logarithms. Technical report No. TI-16/99, Darmstadt University of Technology, 1999.
J. Buchmann, I. Biehl, S. Hamdy, and A. Meyer. A signature scheme based on the intractability of computing roots. Design, Codes and Cryptography, to appear, 2001.
J. Buchmann, M.J. Jacobson, Jr., and E. Teske. On some computational problems in finite abelian groups. Mathematics of Computation, 66:1663–1687, 1997.
J. Buchmann and S. Paulus. A one way function based on module arithmetic in number fields. In Advances in Cryptology — CRYPTO’ 97, number 1294 in LNCS, pages 385–394. Springer-Verlag, 1997.
H. Cohen. A course in computational algebraic number theory. Springer, Heidelberg, 1995.
H. Cohen and H.W. Lenstra, Jr. Heuristics on class groups of number fields. In Number Theory, Lecture notes in Math., volume 1068, pages 33–62. Springer-Verlag, New York, 1983.
H. Cohen and J. Martinet. Class groups of number fields: numerical heuristics. Math. Comp., (48):123–137, 1987.
H. Cohen and J. Martinet. Etude heuristique des groupes de classes des corps de nombres. J. Reine Angew. Math., (404):39–76, 1990.
D. Coppersmith, A.M. Odlyzko, and R. Schroeppel. Discrete logarithms in GF(p). Algorithmica, 1:1–15, 1986.
G. Frey and H.-G. Rück. A remark concerning m-divisibility and the discrete logarithm problem in the divisor class group of curves. Mathematics of Computation, 62:865–874, 1994.
J. L. Hafner and K. S. McCurley. A rigorous subexponential algorithm for computation of class groups. J. Amer. Math. Soc., 2:839–850, 1989.
S. Hamdy and B. Möller. Security of cryptosystems based on class groups of imaginary quadratic orders. In Proc. of AISACRYPT 2000, volume 1976 of Lecture Notes in Computer Science, pages 234–247. Springer, 2000.
J.A. Howell. Spans in the module (ℤm)s. Lin. Mult. Alg., 19:67–77, 1986.
S. Lang. Algebraic number theory. Springer, New York, 1994.
A.K. Lenstra and H.W. Lenstra Jr. Algorithms in number theory. In J. van Leeuwen, editor, Handbook of theoretical computer science. Volume A. Algorithms and Complexity, chapter 12, pages 673–715. Elsevier, 1990.
A.K. Lenstra and E.R. Verheul. Selecting cryptographic key sizes in commercial applications. CCE Quarterley Journal, 3:3–10, 1999. http://www.cryptosavvy.com.
H.W. Lenstra Jr. and C. Pomerance. A rigorous time bound for factoring integers. J. Amer. Math. Soc., 5:483–516, 1992.
LiDIA Group. LiDIA-A library for computational number theory, 1994-2001. http://www.informatik.tu-darmstadt.de/TI/LiDIA.
S. Louboutin. The exponent 2-class-group problem for non-galois-over Q quartic fields that are quadratic extensions of imaginary quadratic fields. J. Number Theory, 49:133–141, 1994.
S. Louboutin. Class-number problems for cubic number fields. Nagoya Math. J., 138:199–208, 1995.
K. McCurley. Cryptographic key distribution and computation in class groups. In R.A. Mollin, editor, Number Theory and Applications, pages 459–479. Kluwer Academic Publishers, 1989.
A. Menezes, T. Okamoto, and S. Vanstone. Reducing elliptic curve logarithms to logarithms in a finite field. In Proceedings of the 23rd Annual ACM Symposium on the Theory of Computing, pages 80–89, 1991.
A.J. Menezes, P.C. van Oorschot, and S.A. Vanstone. Handbook of Applied Cryptography. CRC Press, 1997.
S. Neis. Reducing ideal arithmetic to linear algebra problems. In Proc. of Algorithmic Number Theory Symposium III (ANTS III), volume 1423 of Lecture Notes in Computer Science. Springer, 1998.
S. Neis. Berechnung von Klassengruppen. PhD thesis, Technische Universität Darmstadt, Darmstadt, Germany, 2001. In work.
M. Pohst and H. Zassenhaus. Algorithmic algebraic number theory. Cambridge University Press, Cambridge, 1989.
J.M. Pollard. A Monte Carlo method for factorization. BIT, 15:331–334, 1975.
J.M. Pollard. Monte Carlo methods for index computation (mod p). Math. Comp., 32:918–924, 1978.
C.P. Schnorr and M. Euchner. Lattice basis reduction: improved practical algorithms and solving subset sum problems. In FCT’ 91, volume 529 of Lecture Notes in Computer Science, pages 68–85. Springer, 1991.
R.J. Schoof. Quadratic fields and factorization. In H.W. Lenstra Jr. and R. Tijdeman, editors, Computational methods in number theory, pages 235–286. Mathematisch Centrum, 1982.
N.P. Smart. The discrete logarithm problem on elliptic curves of trace one. Journal of Cryptology, 12/3:193–196, 1999.
N.P. Smart. How secure are elliptic curves over composite extension fields? Technical report CSTR-00-017, Dept. of Computer Science, University of Bristol, 2000.
H.M. Stark. Some effiective cases of the Brauer-Siegel Theorem. Inventiones math., 23:135–152, 1974.
H.J. Stender. Eine Formel für Grundeinheiten in reinen algebraischen Zahlkörpern dritten, vierten und sechsten Grades. Journal of Number Theory, 7:235–250, 1975.
P. Theobald. Berechnung von Hermite-Normalformen. PhD thesis, Technische Universität Darmstadt, Darmstadt, Germany, 2000.
D. Weber. Computing discrete logarithms with the general number field sieve. In Proc. of Algorithmic Number Theory Symposium II (ANTS II), volume 1122 of Lecture Notes in Computer Science. Springer, 1996.
H.C. Williams. The period length of Voronoi’s algorithm for certain cubic orders. Pub. Math. Debrecen, 37:245–265, 1990.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2001 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Meyer, A., Neis, S., Pfahler, T. (2001). First Implementation of Cryptographic Protocols Based on Algebraic Number Fields. In: Varadharajan, V., Mu, Y. (eds) Information Security and Privacy. ACISP 2001. Lecture Notes in Computer Science, vol 2119. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-47719-5_9
Download citation
DOI: https://doi.org/10.1007/3-540-47719-5_9
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-42300-3
Online ISBN: 978-3-540-47719-8
eBook Packages: Springer Book Archive