On the Uniform Learnability of Approximations to Non-recursive Functions | SpringerLink
Skip to main content

On the Uniform Learnability of Approximations to Non-recursive Functions

  • Conference paper
  • First Online:
Algorithmic Learning Theory (ALT 1999)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 1720))

Included in the following conference series:

  • 572 Accesses

Abstract

Blum and Blum (1975) showed that a class \( \mathcal{B} \) of suitable recursive approximations to the halting problem is reliably EX-learnable. These investigations are carried on by showing that \( \mathcal{B} \) is neither in NUM nor robustly EX-learnable. Since the definition of the class \( \mathcal{B} \) is quite natural and does not contain any self-referential coding, \( \mathcal{B} \) serves as an example that the notion of robustness for learning is quite more restrictive than intended.

Moreover, variants of this problem obtained by approximating any given recursively enumerable set A instead of the halting problem K are studied. All corresponding function classes \( \mathcal{U} \)(A) are still EX-inferable but may fail to be reliably EX-learnable, for example if A is non-high and hypersimple. Additionally, it is proved that \( \mathcal{U} \)(A) is neither in NUM nor robustly EX-learnable provided A is part of a recursively inseparable pair, A is simple but not hypersimple or A is neither recursive nor high. These results provide more evidence that there is still some need to find an adequate notion for “naturally learnable function classes.”

Supported by the Deutsche Forschungsgemeinschaft (DFG) under Research Grant no. Am 60/9-2.

Supported by the Grant-in-Aid for Scientific Research in Fundamental Areas from the Japanese Ministry of Education, Science, Sports, and Culture under grant no. 10558047. Part of this work was done while visiting the Laboratoire d’Informatique Algorithmique: Fondements et Applications, Université Paris 7. This author is gratefully indebted to Maurice Nivat for providing financial support and inspiring working conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. A. Ambainis and R. Freivalds. Transformations that preserve learnability. In Proccedings of the 7th International Workshop on Algorithmic Learning Theory (ALT’96) (S. Arikawa and A. Sharma, Eds.) Lecture Notes in Artificial Intelligence Vol. 1160, pages 299–311, Springer-Verlag, Berlin, 1996.

    Google Scholar 

  2. D. Angluin. Inductive inference of formal languages from positive data. Information and Control, 45:117–135, 1980.

    Article  MATH  MathSciNet  Google Scholar 

  3. D. Angluin and C.H. Smith. A survey of inductive inference: Theory and methods. Computing Surveys, 15:237–289, 1983.

    Article  MathSciNet  Google Scholar 

  4. J. Bārzdins. Prognostication of automata and functions. Information Processing’ 71, (1) 81–84. Edited by C. P. Freiman, North-Holland, Amsterdam, 1971.

    Google Scholar 

  5. M. Blum. A machine-independent theory of the complexity of recursive functions. Journal of the Association for Computing Machinery, 14:322–336.

    Google Scholar 

  6. L. Blum and M. Blum. Towards a mathematical theory of inductive inference. Information and Control, 28:125–155, 1975.

    Article  MATH  MathSciNet  Google Scholar 

  7. J. Case, S. Jain, M. Ott, A. Sharma and F. Stephan. Robust learning aided by context. In Proceedings of 11th Annual Conference on Computational Learning Theory (COLT’98), pages 44–55, ACM Press, New York, 1998.

    Google Scholar 

  8. J. Case and C.H. Smith. Comparison of identification criteria for machine inductive inference. Theoretical Computer Science 25:193–220, 1983.

    Article  MATH  MathSciNet  Google Scholar 

  9. R. Freivalds. Inductive inference of recursive functions: Qualitative theory. In Baltic Computer Science (J. Bārzdiņš and D. Bjørner, Eds.), Lecture Notes in Computer Science Vol. 502, pages 77–110. Springer-Verlag, Berlin, 1991.

    Chapter  Google Scholar 

  10. M. Fulk. Robust separations in inductive inference. In Proceedings of the 31st Annual Symposium on Foundations of Computer Science (FOCS), pages 405–410, St. Louis, Missouri, 1990.

    Google Scholar 

  11. M.E. Gold. Language identification in the limit. Information and Control, 10:447–474, 1967.

    Article  MATH  Google Scholar 

  12. J. Grabowski. Starke Erkennung. In Strukturerkennung diskreter kybernetischer Systeme, (R. Linder, H. Thiele, Eds.), Seminarberichte der Sektion Mathematik der Humboldt-Universität Berlin Vol. 82, pages 168–184, 1986.

    Google Scholar 

  13. J.P. Helm. On effectively computable operators. Zeitschrift für mathematische Logik und Grundlagen der Mathematik (ZML), 17:231–244, 1971.

    Article  MATH  MathSciNet  Google Scholar 

  14. S. Jain. Robust Behaviourally Correct Learning. Technical Report TRA6/98 at the DISCS, National University of Singapore, 1998.

    Google Scholar 

  15. S. Jain, D. Osherson, J.S. Royer and A. Sharma. Systems That Learn: An Introduction to Learning Theory. MIT-Press, Boston, MA., 1999.

    Google Scholar 

  16. S. Jain, C. Smith and R. Wiehagen. On the power of learning robustly. In Proceedings of Eleventh Annual Conference on Computational Learning Theory (COLT), pages 187–197, ACM Press, New York, 1998.

    Google Scholar 

  17. E.B. Kinber and T. Zeugmann. Inductive inference of almost everywhere correct programs by reliably working strategies. Journal of Information Processing and Cybernetics, 21:91–100, 1985.

    MathSciNet  MATH  Google Scholar 

  18. E.B. Kinber and T. Zeugmann. One-sided error probabilistic inductive inference and reliable frequency identification. Information and Computation, 92:253–284, 1991.

    Article  MATH  MathSciNet  Google Scholar 

  19. R. Klette and R. Wiehagen. Research in the theory of inductive inference by GDR mathematicians — A survey. Information Sciences, 22:149–169, 1980.

    Article  MATH  MathSciNet  Google Scholar 

  20. S. Kurtz and C.H. Smith. On the role of search for learning. In Proceedings of the 2nd Annual Workshop on Computational Learning Theory (R. Rivest, D. Haussler and M. Warmuth, Eds.) pages 303–311, Morgan Kaufman, 1989.

    Google Scholar 

  21. E. Minicozzi. Some natural properties of strong-identification in inductive inference. Theoretical Computer Science, 2:345–360, 1976.

    Article  MATH  MathSciNet  Google Scholar 

  22. P. Odifreddi. Classical Recursion Theory. North-Holland, Amsterdam, 1989.

    MATH  Google Scholar 

  23. M. Ott and F. Stephan. Avoiding coding tricks by hyperrobust learning. Proceedings of the Fourth European Conference on Computational Learning Theory (EuroCOLT) (P. Fischer and H.U. Simon, Eds.) Lecture Notes in Artificial Intelligence Vol. 1572, pages 183–197, Springer-Verlag, Berlin, 1999.

    Google Scholar 

  24. H. Jr. Rogers. Theory of Recursive Functions and Effective Computability. McGraw-Hill, New York, 1967.

    MATH  Google Scholar 

  25. F. Stephan and T. Zeugmann. On the Uniform Learnability of Approximations to Non-Recursive Functions. DOI Technical Report DOI-TR-166, Department of Informatics, Kyushu University, July 1999.

    Google Scholar 

  26. T. Zeugmann. A-posteriori characterizations in inductive inference of recursive functions. Journal of Information Processing and Cybernetics (EIK), 19:559–594, 1983.

    MathSciNet  MATH  Google Scholar 

  27. T. Zeugmann. On the nonboundability of total effective operators. Zeitschrift für mathematische Logik und Grundlagen der Mathematik (ZML), 30:169–172, 1984.

    Article  MATH  MathSciNet  Google Scholar 

  28. T. Zeugmann. On Bārzdiņš’ conjecture. In Proceedings of the International Workshop on Analogical and Inductive Inference (AII’86) (K.P. Jantke, Ed.), Lecture Notes in Computer Science Vol. 265, pages 220–227. Springer-Verlag, Berlin, 1986.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Stephan, F., Zeugmann, T. (1999). On the Uniform Learnability of Approximations to Non-recursive Functions. In: Watanabe, O., Yokomori, T. (eds) Algorithmic Learning Theory. ALT 1999. Lecture Notes in Computer Science(), vol 1720. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-46769-6_23

Download citation

  • DOI: https://doi.org/10.1007/3-540-46769-6_23

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-66748-3

  • Online ISBN: 978-3-540-46769-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics