Abstract
A general criterion for the undecidabily of sub-classical firstorder logics and important fragments thereof is established. It is applied, among others, to Urquart’s (original version of) C and the closely related logic C*.In addition, hypersequent systems for (first-order) C and C* are introduced and shown to enjoy cut-elimination.
Partly supported by COST-Action No.15, FWF grant P-12652-MAT and WTZ Austria-Italy 1999-2000, Project No.4
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
A. Avron. Hypersequents, logical consequence and intermediate logics for concurrency. Annals for Mathematics and Artificial Intelligence, 4(199):225–248, 1991. 263, 264, 265, 265
A. Avron. The method of hypersequents in the proof theory of propositional nonclassical logics.In Logic: from Foundations to Applications, European Logic Colloquium, pages 1–32. Oxford Science Publications. Clarendon Press. Oxford, 1996. 264
M. Baaz, A. Ciabattoni, C. F ermüller, and H. Veith. Proof theory of fuzzy logics: Urquhart’s C and related logics. In Mathematical Foundations of Computer Science 1998, 23rd International Symposium, MFCS’98, Brno, Czech Republic, August 24-28, 1998, Proceedings, volume 1450 of LNCS, pages 203–212. Springer-Verlag, 1998. 258, 259, 263, 263, 263, 263, 264, 265, 265, 266
A. Ciabattoni. Bounded contraction in systems with linearity. In N. Murray, editor, Automated Reasoning with Analytic Tableaux and Related Methods, International Conference, TABLEAUX’99, Saratoga Springs, volume 1617 of LNAI, pages 113–128. Springer-Verlag, 1999. To appear. 266
M. Dummett. A propositional calculus with a denumerable matrix. Journal of Symbolic Logic, 24:96–107, 1959. 263
J. Y. Girard. Linear logic. Theoretical Computer Science, 50:1–101, 1987. 263
K. Gödel. Zum intuitionistischen Aussagenkalkül. Anzeiger der Akademie der Wissenschaften in Wien, 69:65–66, 1932. 263
P. Hájek. Metamathematics of Fuzzy Logic. Kluwer, 1998. 258, 259, 263, 263
P. Hájek, L. Godo, and F. Esteva. A complete many-valued logic with productconjunction. Archive for Math. Logic, 35:191–208, 1996. 263
E. Kiriyama and H. Ono. The contraction rule in decision problems for logics without structural rules. Studia Logica, 50/2:299–319, 1991. 258
Y. Komori. Predicate logics without structural rules. Studia Logica, 45:393–404, 1985. 258
J. Lukasiewicz. Philosophische Bemerkungen zu mehrwertigen Systemen des Aussagenkalk üls. Comptes rendus des séances de la Société des Sciences et des Lettres de Varsovie Cl. III, 23:51–77, 1930. 263
J.M. M endez and F. Salto. Urquhart’s C with intuitionistic negation: Dummett’s LC without the contraction axiom. Notre Dame Journal of Formal Logic, 36/3:407–413, 1995. 258, 258, 263
H. Ono and Y. Komori. Logics without the contraction rule. Journal of Symbolic Logic, 50/1:169–201, 1985. 258, 265
G. Takeuti. Proof Theory. North-Holland, Amsterdam, 2nd edition, 1987.
A. Urquhart. Many-valued logic. In D. Gabbay and F. Guenthner, editors, Handbook of Philosophical Logic, volume III. Reidel, Dordrecht, 1984. 258, 258, 263
A. Urquhart. Basic Many-valued logic. Manuscript, private communication, 1999. 258
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 1999 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Baaz, M., Ciabattoni, A., Fermüller, C., Veith, H. (1999). On the Undecidability of Some Sub-classical First-Order Logics. In: Rangan, C.P., Raman, V., Ramanujam, R. (eds) Foundations of Software Technology and Theoretical Computer Science. FSTTCS 1999. Lecture Notes in Computer Science, vol 1738. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-46691-6_20
Download citation
DOI: https://doi.org/10.1007/3-540-46691-6_20
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-66836-7
Online ISBN: 978-3-540-46691-8
eBook Packages: Springer Book Archive