Abstract
The main goal of this paper is to prove a Digital Jordan- Brouwer Theorem and an Index Theorem for simplicity 26-surfaces. For this, we follow the approach to Digital Topology introduced in [2], and find a digital space such that the continuous analogue of each simplicity 26-surface is a combinatorial 2-manifold. Thus, the separation theorems quoted above turn out to be an immediate consequence of the general results obtained in [2] and [3] for arbitrary digital n-manifolds.
This work has been partially supported by the project DGES TIC2000-1368-C03-01.
Chapter PDF
Similar content being viewed by others
References
R. Ayala, E. Domínguez, A.R. Francés, A. Quintero. Digital Lighting Functions. Lecture Notes in Computer Science. 1347 (1997) 139–150.
R. Ayala, E. Domínguez, A.R. Francés, A. Quintero. Weak Lighting Functions and Strong 26-surfaces. To appear in Theoretical Computer Science.
R. Ayala, E. Domíguez, A. R. Francés and A. Quintero. A Digital Index Theorem. Int. J. Patter Recog. Art. Intell. 15(7) (2001) 1–22.
G. Bertrand, R. Malgouyres. Topological Properties of Discrete Surfaces. Lect. Notes in Comp. Sciences. 1176 (1996) 325–336.
M. Couprie, G. Bertrand. Simplicity Surfaces: a new definition of surfaces in ℤ3. SPIE Vision Geometry V. 3454 (1998) 40–51.
R. Malgouyres, G. Bertrand. Complete Local Characterization of Strong 26-Surfaces: Continuous Analog for Strong 26-Surfaces. Int. J. Pattern Recog. Art. Intell. 13(4) (1999) 465–484.
T.Y. Kong, A.W. Roscoe. Continuous Analogs of Axiomatized Digital Surfaces. Comput. Vision Graph. Image Process. 29 (1985) 60–86.
T.Y. Kong, A. Rosenfeld. Digital Topology: Introduction and Survey. Comput. Vision Graph. Image Process. 48 (1989) 357–393.
D.G. Morgenthaler, A. Rosenfeld. Surfaces in three-dimensional Digital Images. Inform. Control. 51 (1981) 227–247.
C.P. Rourke, and B.J. Sanderson. Introduction to Piecewise-Linear Topology. Ergebnisse der Math. 69, Springer 1972.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2002 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Ciria, J.C., Domínguez, E., Francés, A.R. (2002). Separation Theorems for Simplicity 26-Surfaces. In: Braquelaire, A., Lachaud, JO., Vialard, A. (eds) Discrete Geometry for Computer Imagery. DGCI 2002. Lecture Notes in Computer Science, vol 2301. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45986-3_4
Download citation
DOI: https://doi.org/10.1007/3-540-45986-3_4
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-43380-4
Online ISBN: 978-3-540-45986-6
eBook Packages: Springer Book Archive