Agent’s Adaptivity — Some Aspects of Theoretical Foundations of a Neural Agent Training Process | SpringerLink
Skip to main content

Agent’s Adaptivity — Some Aspects of Theoretical Foundations of a Neural Agent Training Process

  • Conference paper
  • First Online:
From Theory to Practice in Multi-Agent Systems (CEEMAS 2001)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 2296))

  • 399 Accesses

Abstract

In the paper some aspects of theoretical foundations of a neural agent adaptivity is discussed. A method of regularization of a gradient system which models a training process of a layer artificial neural network is considered. The possibilities of applying the result to agent systems are discussed as well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bielecki, A.: Topological Conjugacy of Cascades Generated by Gradient Flow on a Two-Dimensional Sphere, Annales Polonici Mathematici, vol.73 (2000)

    Google Scholar 

  2. Bielecki A.: A Neuronal System for Simulation of Consciousness Dynamics Based on Information Metabolism Theory, Proceedings of the Seventh National Conference on Application of Mathematics in Biology and Medicine, Zawoja, Poland (2001)-accepted.

    Google Scholar 

  3. Canamero D.: Modeling Motivations and Emotions as a Basis for Intelligent Behavior, Proceedings of the First International Conference on Autonomus Agents, Marina del Rey, California USA (1997)

    Google Scholar 

  4. Hertz J., Krogh A., Palmer R.G.: Introduction to the Theory of Neural Computation, Addison-Welsey Publishing Company, Massachusetts (1991)

    Google Scholar 

  5. Kokoszka A., Bielecki A., Holas P.: Mental Organization According to Metabolism of Information and its Mathematical Description, International Journal of Neuroscience, vol 107 (2001)

    Google Scholar 

  6. Kisiel-Dorohinicki M., Klapper-Rybicka M.: Evolution of Neural Networks in a Multi-Agent World, Universitatis Iagellonica Acta Scientiarum Litterarumque, vol.10 (2000)

    Google Scholar 

  7. Korbicz J., Obuchowicz A., Uciński D.: Sztuczne sieci neuronowe-podstawy i zastosowania, (Artificial Neural Networks — Foundations and Applications), Akademicka Oficyna Wydawnicza PLJ, Warszawa (1994)-in Polish.

    Google Scholar 

  8. Li M.: Structural Stability of Morse-Smail Gradient-Like Flows under Discretization, SIAM J. Math. Anal., vol.28. 2 (1997)

    Google Scholar 

  9. Mitaim S., Kosko B.: Neural Fuzzy Agent for Profile Learning and Object Maching, Proceedings of the First International Conference on Autonomus Agents, Marina del Rey, California USA (1997)

    Google Scholar 

  10. Müller B., Reinhardt J.: Neural Networks, Springer Verlag, New York (1990)

    MATH  Google Scholar 

  11. Neves M.C., Oliveira E.: A Control Architecture for an Autonomus Mobile Robot, Proceedings of the First International Conference on Autonomus Agents, Marina del Rey, California USA (1997)

    Google Scholar 

  12. Osowski S.: Sieci neuronowe w ujeciu algorytmicznym, (An Algorithmical Approach to Neural Networks), Wydawnictwa Naukowo-Techniczne, Warszawa (1996)-in Polish.

    Google Scholar 

  13. Owens A.J., Filkin D.L.: Efficient Training of the Back Propagation Network by Solving a System of Stiff Ordinary Differential Equations, Int. Joint Conf. on Neural Networks, vol.II, Washington (1989) New York: IEEE.

    Google Scholar 

  14. Palis J., de Melo W.: Geometric Theory of Dynamical Systems, Springer Verlag, New York (1982)

    MATH  Google Scholar 

  15. Rutkowska D., Piliński M., Rutkowski L.: Sieci neuronowe, algorytmy genetyczne i systemy rozmyte, (Neural Networks, Genetic Algorithms and Fuzzy Systems), PWN, Warszawa-Łódź (1997)-in Polish.

    Google Scholar 

  16. Tadeusiewicz R.: Sieci neuronowe, (Neural Networks), Akademicka Oficyna Wydawnicza (1993)-in Polish.

    Google Scholar 

  17. Velasquez J.D., Maes P.: Cathexis: a Computational Model of Emotions, Proceedings of the First International Conference on Autonomus Agents, Marina del Rey, California USA (1997)

    Google Scholar 

  18. Weiss G., Sen S. (red.): Adaptation and Learning in Multi-Agent Systems, Lecture Notes in Artificial Intelligence (1996)

    Google Scholar 

  19. Yao X.: Evolutionary Artificial Neural Networks, International Journal of Neural Systems (1993)

    Google Scholar 

  20. Zrehen S., Gaussier P.: A Neural Architecture for Motivated Navigation Behavior in an Animat, Proceedings of the First International Conference on Autonomus Agents, Marina del Rey, California USA (1997)

    Google Scholar 

  21. Żurada J., Barski M., Jedruch W.: Sztuczne sieci neuronowe, (Artificial Neural Networks), PWN, Warszawa (1996)-in Polish.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bielecki, A. (2002). Agent’s Adaptivity — Some Aspects of Theoretical Foundations of a Neural Agent Training Process. In: Dunin-Keplicz, B., Nawarecki, E. (eds) From Theory to Practice in Multi-Agent Systems. CEEMAS 2001. Lecture Notes in Computer Science(), vol 2296. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45941-3_5

Download citation

  • DOI: https://doi.org/10.1007/3-540-45941-3_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-43370-5

  • Online ISBN: 978-3-540-45941-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics