Abstract
In the context of graph transformations we look at the operation of switching, which can be viewed as an elegant method for realizing global transformations of graphs through local transformations of the vertices. A switching class is then a set of graphs obtainable from a given start graph by applying the switching operation.
Continuing the line of research in Ehrenfeucht et al. we consider the problem of detecting three kinds of graphs in switching classes. For all three we find algorithms running in time polynomial in the number of vertices in the graphs, although switching classes contain exponentially many graphs.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
B. Aspvall, M.F. Plass, and R.E. Tarjan. A linear-time algorithm for testing the truth of certain quantified boolean formulas. Inf. Proc. Letters, 8(3):121–123, 1979.
P.J. Cameron. Cohomological aspects of two-graphs. Math. Z., 157:101–119, 1977.
D.G. Corneil and R.A. Mathon, editors. Geometry and Combinatorics: Selected Works of J.J. Seidel. Academic Press, Boston, 1991.
A. Ehrenfeucht, J. Hage, T. Harju, and G. Rozenberg. Complexity issues in switching of graphs. In H. Ehrig, G. Engels, H.-J. Kreowski, and G. Rozenberg, editors, Theory And Application Of Graph Transformations-TAGT’ 98, volume 1764 of Lecture Notes in Computer Science, pages 59–70, Berlin, 2000. Springer-Verlag.
A. Ehrenfeucht, T. Harju, and G. Rozenberg. The Theory of 2-Structures. World Scientific, 1999.
A. Ehrenfeucht and G. Rozenberg. Dynamic labeled 2-structures. Mathematical Structures in Computer Science, 4:433–455, 1994.
J.L. Gross and T.W. Tucker. Topological Graph Theory. Wiley, New York, 1987.
J. Hage. Structural Aspects Of Switching Classes. PhD thesis, LIACS, 2001. http://www.cs.uu.nl/people/jur/2s.html.
J. Hage and T. Harju. A characterization of acyclic switching classes using forbidden subgraphs. Technical Report 5, Leiden University, Department of Computer Science, 2000. Submitted to Siam J. Disc. Math.
J. Kratochvýl, J. Nešetřil, and O. Zýka. On the computational complexity of Seidel’s switching, in: Combinatorics, Graphs and Complexity (M. Fiedler and J. Nešetřil eds.) Proceedings 4th Czechoslovak Symposium on Combinatorics, Prachatice 1990. Annals of Discrete Math., 51:161–166, 1992.
C.L. Mallows and N.J.A. Sloane. Two-graphs, switching classes and Euler graphs are equal in number. SIAM J. Appl. Math, 28:876–880, 1975.
J.J. Seidel. Graphs and two-graphs. In Proc. 5th Southeastern Conf. on Combinatorics, Graph Theory, amd Computing, Winnipeg, Canada, 1974. Utilitas Mathematica Publishing Inc.
J.J. Seidel. A survey of two-graphs. In Colloquio Internazionale sulle Teorie Combinatorie (Rome,1973), volume I, pages 481–511, Rome, 1976. Acc. Naz. Lincei. Reprinted in [3].
J.J. Seidel and D.E. Taylor. Two-graphs, a second survey. In L. Lovasz and V.T. Sós, editors, Algebraic Methods in Graph Theory (Proc. Internat. Colloq., Szeged, 1978), volume II, pages 689–711, Amsterdam, 1981. North-Holland. Reprinted in [3].
T. Zaslavsky. Biased graphs. I. Bias, balance, and gains. J. Combin. Theory, Ser. B, 47:32–52, 1989.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2002 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Hage, J., Harju, T., Welzl, E. (2002). Euler Graphs, Triangle-Free Graphs and Bipartite Graphs in Switching Classes. In: Corradini, A., Ehrig, H., Kreowski, H.J., Rozenberg, G. (eds) Graph Transformation. ICGT 2002. Lecture Notes in Computer Science, vol 2505. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45832-8_13
Download citation
DOI: https://doi.org/10.1007/3-540-45832-8_13
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-44310-0
Online ISBN: 978-3-540-45832-6
eBook Packages: Springer Book Archive