Disparity from Monogenic Phase | SpringerLink
Skip to main content

Disparity from Monogenic Phase

  • Conference paper
  • First Online:
Pattern Recognition (DAGM 2002)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2449))

Included in the following conference series:

Abstract

Disparity estimation is a fundamental problem of computer vision. Besides other approaches, disparity estimation from phase information is a quite wide-spread technique. In the present paper, we have considered the influence of the involved quadrature filters and we have replaced them with filters based on the monogenic signal. The implemented algorithm makes use of a scale-pyramid and applies channel encoding for the representation and fusion of the estimated data. The performed experiments show a significant improvement of the results.

This work has been supported by DFG Grant FE 583/1–1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Jähne, B.: Digitale Bildverarbeitung. Springer-Verlag, Berlin (1997)

    Google Scholar 

  2. Granlund, G.H., Knutsson, H.: Signal Processing for Computer Vision. Kluwer Academic Publishers, Dordrecht (1995)

    Google Scholar 

  3. Borga, M.: Learning Multidimensional Signal Processing. PhD thesis, Linköping University, Sweden (1998)

    Google Scholar 

  4. Scharstein, D., Szelisky, R.: A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. Int. Journal of Computer Vision 47 (2002) 7–42

    Article  MATH  Google Scholar 

  5. Westelius, C.J.: Focus of Attention and Gaze Control for Robot Vision. PhD thesis, Linköping University, Sweden (1995)

    Google Scholar 

  6. Hansen, M.: Stereosehen-ein verhaltensbasierter Ansatz. PhD thesis, Inst. f. Inf. u. Prakt. Math. der Christian-Albrechts-Universität Kiel (1998)

    Google Scholar 

  7. Hansen, M., Daniilidis, K., Sommer, G.: Optimization of stereo disparity estimation using the instantaneous frequency. In: Proc. Computer Analysis of Images and Patterns. Volume 1296 of LNCS, Springer-Verlag (1997) 321–328

    Chapter  Google Scholar 

  8. Felsberg, M.: Low-Level Image Processing with the Structure Multivector. PhD thesis, Inst. f. Inf. u. Prakt. Math. der Christian-Albrechts-Universität Kiel (2002)

    Google Scholar 

  9. Felsberg, M., Sommer, G.: The monogenic signal. IEEE Transactions on Signal Processing 49 (2001) 3136–3144

    Article  MathSciNet  Google Scholar 

  10. Felsberg, M., Sommer, G.: A new extension of linear signal processing for estimating local properties and detecting features. In: 22. DAGM Symposium Mustererkennung, Springer-Verlag (2000) 195–202

    Google Scholar 

  11. Burt, P.J., Adelson, E.H.: The Laplacian pyramid as a compact image code. IEEE Trans. Communications 31 (1983) 532–540

    Article  Google Scholar 

  12. Granlund, G.H.: In search of a general picture processing operator. Computer Graphics and Image Processing 8 (1978) 155–173

    Article  Google Scholar 

  13. Nordberg, K., Granlund, G., Knutsson, H.: Representation and Learning of Invariance. In: Proc. IEEE Int’l Conf. on Image Processing, Austin, Texas (1994)

    Google Scholar 

  14. Forssén, P.E., Granlund, G., Wiklund, J.: Channel representation of colour images. Technical Report LiTH-ISY-R-2418, Dept. EE, Linköping University (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Felsberg, M. (2002). Disparity from Monogenic Phase. In: Van Gool, L. (eds) Pattern Recognition. DAGM 2002. Lecture Notes in Computer Science, vol 2449. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45783-6_30

Download citation

  • DOI: https://doi.org/10.1007/3-540-45783-6_30

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-44209-7

  • Online ISBN: 978-3-540-45783-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics