Abstract
The Lübeck Transformation System supports the refinement of higher order algebraic specifications following sound transformation rules. We discuss the system requirements, describe the specification language and explain the life cycle of a specification in the transformation process. The system analyses various properties of the specification providing user guidance for further design decisions. The refinement relation is implemented by two refinement modes covering the different transformation rules for entire specifications and single axioms. Finally we describe the architecture and the implementation of the system. Throughout the paper, we accompany the presentation with a running example.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge Press, 1998.
F. L. Bauer, M. Broy, W. Dosch, F. Geiselbrechtinger, W. Hesse, R. Gnatz, B. Krieg-Bückner, A. Laut, T. Matzner, B. Möller, F. Nickl, H. Partsch, P. Pepper, K. Samelson, M. Wirsing, and H. Wössner. The Munich Project CIP: The Wide Spectrum Language CIP-L, volume 183 of LNCS. Springer, 1985.
F.L. Bauer, H. Ehler, A. Horsch, B. Möller, H. Partsch, O. Paukner, and P. Pepper. The Munich Project CIP: The Program Transformation System CIP-S, volume 292 of LNCS. Springer, 1987.
F.L. Bauer, B. Möller, H. Partsch, and P. Pepper. Formal program construction by transformation-computer-aided, intuition-guided programming. IEEE Transactions on Software Engineering, 15:165–180, 1989.
M. Burstall and J. Darlington. A transformation system for developing recursive programs. Journal ofthe ACM, 1(24):44–67, 1977.
A. Dold. Representing, verifying and applying software development steps using the PVS system. In V.S. Alagar and M. Nivat, editors, Proceedings ofthe Fourth International Conference on Algebraic Methodology and Software Technology, AMAST’95, Montreal, 1995, volume 936 of LNCS, pages 431–435. Springer, 1995.
W. Dosch and S. Magnussen. Computer aided fusion for algebraic program derivation. Nordic Journal ofComputing, 9, 2001. (to appear).
M. Feather. A survey and classification of some program transformation approaches and techniques. In L.G.L.T. Meertens, editor, Proceedings TC2 Working Conference on Program Specification and Transformation, pages 165–195. North Holland, 1987.
U. Fraus and H. Hussmann. Term induction proofs by a generalisation of narrowing. In C. Rattray and R.G. Clark, editors, The Unified Computation Laboratory, pages 43–55. Clarendon Press, 1992.
S. Kahrs, D. Sannella, and A. Tarlecki. The definition of Extended ML: a gentle introduction. Theoretical Computer Science, 173:445–484, 1997.
M. Lifantsev and L. Bachmair. An LPO-based termination ordering for higherorder terms without λ-abstraction. In J. Grundy and M. Newey, editors, 11th International Conference, TPHOLs’98, Canberra, Australia, 1998, volume 1479 of LNCS, pages 277–293. Springer, 1998.
C. Lüth, H. Tej, Kolyang, and B. Krieg-Brückner. TAS and IsaWin: Tools for transformational program development and theorem proving. In J.-P. Finance, editor, Fundamental Approaches to Software Engineering FASE’99. Joint European Conferences on Theory and Practice of Software ETAPS’99, volume 1577 of LNCS, pages 239–243. Springer, 1999.
K. Meinke. Universal algebra in higher types. Theoretical Computer Science, 100:385–417, 1992.
P. D. Mosses. CASL: a guided tour of its design. In J. L. Fiadeiro, editor, Recent Trends in Algebraic Development Techniques. 13th International Workshop, WADT’98 Lisbon, Portugal, 1998, volume 1589 of LNCS, pages 216–240. Springer, 1999.
S. Owre, N. Shankar, J. M. Rushby, and D.W.J. Stringer-Calvert. PVS system guide. Technical report, Computer Science Laboratory, SRI International, Menlo Park, CA, 1999.
L.C. Paulson. Logic and Computation: Interactive Proofwith Cambridge LCF. Cambridge University Press, 1990.
L.C. Paulson. Isabelle: A Generic Theorem Prover, volume 828 of LNCS. Springer, 1994.
L.C. Paulson. ML for the Working Programmer. Cambridge University Press, 1996.
A. Pettorossi and M. Proietti. Rules and strategies for transforming functional and logic programs. ACM Computing Surveys, 28(2):360–414, 1996.
D.R. Smith. Automating the design of algorithms. In B. Möller, editor, Formal Program Development (IFIP TC2/WG 2.1), volume 755 of LNCS, pages 324–354. Springer, 1993.
M. Wirsing. Algebraic specification. In J. van Leeuwen, editor, Handbook ofTheoretical Computer Science, volume B, pages 675–788. Elsevier Science Publishers, 1990.
M. Wirsing, H. Partsch, P. Pepper, W. Dosch, and M. Broy. On hierarchies of abstract data types. Acta Informatica, 20:1–33, 1983.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2002 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Dosch, W., Magnussen, S. (2002). The Lübeck Transformation System: A Transformation System for Equational Higher Order Algebraic Specifications. In: Cerioli, M., Reggio, G. (eds) Recent Trends in Algebraic Development Techniques. WADT 2001. Lecture Notes in Computer Science, vol 2267. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45645-7_5
Download citation
DOI: https://doi.org/10.1007/3-540-45645-7_5
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-43159-6
Online ISBN: 978-3-540-45645-2
eBook Packages: Springer Book Archive