The Lübeck Transformation System: A Transformation System for Equational Higher Order Algebraic Specifications | SpringerLink
Skip to main content

The Lübeck Transformation System: A Transformation System for Equational Higher Order Algebraic Specifications

  • Conference paper
  • First Online:
Recent Trends in Algebraic Development Techniques (WADT 2001)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2267))

Included in the following conference series:

Abstract

The Lübeck Transformation System supports the refinement of higher order algebraic specifications following sound transformation rules. We discuss the system requirements, describe the specification language and explain the life cycle of a specification in the transformation process. The system analyses various properties of the specification providing user guidance for further design decisions. The refinement relation is implemented by two refinement modes covering the different transformation rules for entire specifications and single axioms. Finally we describe the architecture and the implementation of the system. Throughout the paper, we accompany the presentation with a running example.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge Press, 1998.

    Google Scholar 

  2. F. L. Bauer, M. Broy, W. Dosch, F. Geiselbrechtinger, W. Hesse, R. Gnatz, B. Krieg-Bückner, A. Laut, T. Matzner, B. Möller, F. Nickl, H. Partsch, P. Pepper, K. Samelson, M. Wirsing, and H. Wössner. The Munich Project CIP: The Wide Spectrum Language CIP-L, volume 183 of LNCS. Springer, 1985.

    MATH  Google Scholar 

  3. F.L. Bauer, H. Ehler, A. Horsch, B. Möller, H. Partsch, O. Paukner, and P. Pepper. The Munich Project CIP: The Program Transformation System CIP-S, volume 292 of LNCS. Springer, 1987.

    MATH  Google Scholar 

  4. F.L. Bauer, B. Möller, H. Partsch, and P. Pepper. Formal program construction by transformation-computer-aided, intuition-guided programming. IEEE Transactions on Software Engineering, 15:165–180, 1989.

    Article  MATH  Google Scholar 

  5. M. Burstall and J. Darlington. A transformation system for developing recursive programs. Journal ofthe ACM, 1(24):44–67, 1977.

    Article  MathSciNet  Google Scholar 

  6. A. Dold. Representing, verifying and applying software development steps using the PVS system. In V.S. Alagar and M. Nivat, editors, Proceedings ofthe Fourth International Conference on Algebraic Methodology and Software Technology, AMAST’95, Montreal, 1995, volume 936 of LNCS, pages 431–435. Springer, 1995.

    Google Scholar 

  7. W. Dosch and S. Magnussen. Computer aided fusion for algebraic program derivation. Nordic Journal ofComputing, 9, 2001. (to appear).

    Google Scholar 

  8. M. Feather. A survey and classification of some program transformation approaches and techniques. In L.G.L.T. Meertens, editor, Proceedings TC2 Working Conference on Program Specification and Transformation, pages 165–195. North Holland, 1987.

    Google Scholar 

  9. U. Fraus and H. Hussmann. Term induction proofs by a generalisation of narrowing. In C. Rattray and R.G. Clark, editors, The Unified Computation Laboratory, pages 43–55. Clarendon Press, 1992.

    Google Scholar 

  10. S. Kahrs, D. Sannella, and A. Tarlecki. The definition of Extended ML: a gentle introduction. Theoretical Computer Science, 173:445–484, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  11. M. Lifantsev and L. Bachmair. An LPO-based termination ordering for higherorder terms without λ-abstraction. In J. Grundy and M. Newey, editors, 11th International Conference, TPHOLs’98, Canberra, Australia, 1998, volume 1479 of LNCS, pages 277–293. Springer, 1998.

    Google Scholar 

  12. C. Lüth, H. Tej, Kolyang, and B. Krieg-Brückner. TAS and IsaWin: Tools for transformational program development and theorem proving. In J.-P. Finance, editor, Fundamental Approaches to Software Engineering FASE’99. Joint European Conferences on Theory and Practice of Software ETAPS’99, volume 1577 of LNCS, pages 239–243. Springer, 1999.

    Google Scholar 

  13. K. Meinke. Universal algebra in higher types. Theoretical Computer Science, 100:385–417, 1992.

    Article  MATH  MathSciNet  Google Scholar 

  14. P. D. Mosses. CASL: a guided tour of its design. In J. L. Fiadeiro, editor, Recent Trends in Algebraic Development Techniques. 13th International Workshop, WADT’98 Lisbon, Portugal, 1998, volume 1589 of LNCS, pages 216–240. Springer, 1999.

    Google Scholar 

  15. S. Owre, N. Shankar, J. M. Rushby, and D.W.J. Stringer-Calvert. PVS system guide. Technical report, Computer Science Laboratory, SRI International, Menlo Park, CA, 1999.

    Google Scholar 

  16. L.C. Paulson. Logic and Computation: Interactive Proofwith Cambridge LCF. Cambridge University Press, 1990.

    Google Scholar 

  17. L.C. Paulson. Isabelle: A Generic Theorem Prover, volume 828 of LNCS. Springer, 1994.

    MATH  Google Scholar 

  18. L.C. Paulson. ML for the Working Programmer. Cambridge University Press, 1996.

    Google Scholar 

  19. A. Pettorossi and M. Proietti. Rules and strategies for transforming functional and logic programs. ACM Computing Surveys, 28(2):360–414, 1996.

    Article  Google Scholar 

  20. D.R. Smith. Automating the design of algorithms. In B. Möller, editor, Formal Program Development (IFIP TC2/WG 2.1), volume 755 of LNCS, pages 324–354. Springer, 1993.

    Google Scholar 

  21. M. Wirsing. Algebraic specification. In J. van Leeuwen, editor, Handbook ofTheoretical Computer Science, volume B, pages 675–788. Elsevier Science Publishers, 1990.

    Google Scholar 

  22. M. Wirsing, H. Partsch, P. Pepper, W. Dosch, and M. Broy. On hierarchies of abstract data types. Acta Informatica, 20:1–33, 1983.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dosch, W., Magnussen, S. (2002). The Lübeck Transformation System: A Transformation System for Equational Higher Order Algebraic Specifications. In: Cerioli, M., Reggio, G. (eds) Recent Trends in Algebraic Development Techniques. WADT 2001. Lecture Notes in Computer Science, vol 2267. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45645-7_5

Download citation

  • DOI: https://doi.org/10.1007/3-540-45645-7_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-43159-6

  • Online ISBN: 978-3-540-45645-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics