Abstract
Navigation has always been an interdisciplinary topic of research, because mobile agents of different types are inevitably faced with similar navigational problems. Therefore, human navigation can readily be compared to navigation in other biological organisms or in artificial mobile agents like autonomous robots. One such navigational strategy, route-based navigation, in which an agent moves from one location to another by following a particular route, is the focus of this paper. Drawing on the research from cognitive psychology and linguistics, biology, and robotics, we present a simple, abstract formalism to express the key concepts of route-based navigation in a common scientific language. Starting with the distinction of places and route segments, we develop the notion of a route graph, which can serve as the basis for complex navigational knowledge. Implications and constraints of the model are discussed along the way, together with examples of different instantiations of parts of the model in different mobile agents. By providing this common conceptual framework, we hope to advance the interdisciplinary discussion of spatial navigation.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Able, K. P. (1996). Large-scale navigation. The Journal of Exp. Biology, 199, 1–2.
Allen, G.L. (1999). Spatial abilities, cognitive maps, and wayfinding: Bases for individual differences in spatial cognition and behavior. In R. Golledge (ed.), Wayfinding behavior (46–80). Baltimore: Johns Hopkins.
Berendt, B., Barkowsky, T., Freksa, C., & Kelter, S. (1998). Spatial representation with aspect maps. In C. Freksa, C. Habel, & K. F. Wender (Eds.), Spatial cognition-An interdisciplinary approach to representing and processing spatial knowledge. Barlin: Springer.
Cartwright, B.A. & Collet, T.S. (1983). Landmark Learning in Bees. In Journal of Comparative Physiology, A 151, 521–543.
Collet, T.S. & Baron, J. (1994). Biological compasses and the coordinate frame of landmark memories in honeybees. Nature, 368, 137–140.
Duckett, T. & Nehmzow, U. (1997). Experiments in evidence based localisation for a mobile robot. In Spatial Reasoning in Mobile Robots and Animals (25–34). Manchester University. AISB-97 Workshop.
Etienne, A.S., Maurer, R., Georgakopoulos, J. & Griffin, A. (1999). Dead reckoning (path integration), landmarks, and representation of space in a comparative perspective. In R. Golledge (ed.), Wayfinding behavior (197–228). Baltimore: Johns Hopkins.
Eschenbach, C., Tschander, L., Habel, C., & Kulik, L. (2000). The specifications of paths. This issue.
Franz, M. O., Schölkopf, B., Georg, P., Mallot, H. A., and Bülthoff, H. H. (1997). Learning view graphs for robot navigation. In W. L. Johnson (ed.), Proc. 1st Int. Conf. on Autonomous Agents (138–147). New York. ACM Press.
Fu, D.D., Hammond, K.J., & Swain, M.J. (1996). Navigation for everyday life. Technical Report 96-03. Dept. of Computer Science, University of Chicago.
Gillner, S. & Mallot, H.A. (1998) Navigation and acquisition of spatial knowledge in a virtual maze. Journal of Cognitive Neuroscience, 10, 445–463.
Golledge, R.G. (1999). Human wayfinding and cognitive maps. In R. Golledge (Ed.), Way-finding behavior (5–45). Baltimore: Johns Hopkins.
Gutmann, J.-S. & Nebel, B. (1997). Navigation mobiler Roboter mit Laserscans. In P. Levi, T. Bräunl, and N. Oswald (eds.), Autonome Mobile Systeme (36–47). Informatik aktuell, Berlin, Heidelberg New York. Springer.
Habel, C. (1988). Prozedurale Aspekte der Wegplanung und Wegbeschreibung. In H. Schnelle & G. Rickheit (eds.), Sprache in Mensch und Computer (107–133). Opladen: Westdeutscher Verlag.
Herrmann, Th., Buhl, H.M. & Schweizer, K. (1995). Zur blickpunktbezogenen Wissensrepräsentation: der Richtungseffekt. Zeitschrift für Psychologie, 203, 1–23.
Judd, S.P.D., Dale, K., & Collett, T.S. (1999). On the fine-structure of view-based navigation in insects. In R. Golledge (ed.), Wayfinding behavior (229–258). Baltimore: Johns Hopkins.
Krieg-Brückner, B. (1998). A Taxonomy of Spatial Knowledge for Navigation. In: Schmid, U., Wysotzki, F. (Eds.). Qualitative and Quantitative Approaches to Spatial Inference and the Analysis of Movements. Technical Report, 98-2, Technische Universität Berlin, Computer Science Department.
Krieg-Brückner, B., Röfer, T., Carmesin, H.-O., Müller, R. (1998). A Taxonomy of Spatial Knowledge for Navigation and its Application to the Bremen Autonomous Wheelchair. In Freksa, Ch., Habel, Ch., Wender, K. F. (Eds.), Spatial Cognition. Lecture Notes in Artificial Intelligence 1404 (373–397). Springer.
Kuipers, B. (1998). A hierarchy of qualitative representations for space. In Freksa, Ch., Habel, Ch., Wender, K. F. (Eds.), Spatial Cognition. Lecture Notes in Artificial Intelligence 1404. Barlin: Springer.
Kuipers, B. J. & Byun, Y.-T. (1991). A robot exploration and mapping strategy based on a semantic hierarchy of spatial representations. Journal of Robotics and Autonomous Systems, 8, 47–63.
Loomis, J.M, Klatzky, R.L., Golledge, R.G., & Philbeck, J.W. (1999). Human navigation by path integration. In R. Golledge (ed.), Wayfinding behavior (125–151). Baltimore: Johns Hopkins.
Lynch, K. (1960). The Image of the City. Cambridge: MIT-Press.
McDonald, T.P. & Pellegrino, J.W. (1993). Psychological perspectives on spatial cognition. In T. Gärling & R.G. Golledge (Eds.), Behavior and Environment: Psychological and geographical approaches, p. 47–82. Amsterdam: Elsevier.
Möller, R., Lambrinos, D., Pfeifer, R., Wehner, R., & Labhart, T. (1998). Modeling Ant Navigation with an Autonomous Agent. In: From Animals to Animats, Proc. Fifth International Conference of The Society for Adaptive Behavior (185–194). MIT Press.
Montello, D.R. (1998). A new framework for understanding the acquisition of spatial knowledge in large-scale environments. In M. Egenhofer & R.G. Golledge (Eds.), Spatial and temporal reasoning in Geographic Information Systems (143–154). Oxford University Press.
Musto, A., Stein, K., Eisenkolb, A., Röfer, T. (1999). Qualitative and Quantitative Representations of Locomotion and their Application in Robot Navigation. In: Proc. of the 16th International Joint Conference on Artificial Intelligence (1067–1073). Morgan Kaufman Publishers, Inc. San Francisco, CA.
Nigro, G. & Neisser, U. (1983). Point of view in personal memories. Cognitive Psychology, 15, 467–482.
O’Keefe, J. & Nadel, L. (1978). The hippocampus as a cognitive map. Oxford University Press.
Poucet, B. (1993). Spatial cognitive maps in animals: New hypotheses on their structure and neural mechanisms. Psychological Review, 100, 163–182.
Röfer, T. (1998). Panoramic Image Processing and Route Navigation. PhD thesis. BISS Monographs 7. Shaker-Verlag.
Röfer, T. (1999). Route Navigation Using Motion Analysis. In: Freksa, C., Mark, D. M. (Eds.), Spatial Information Theory, Proc. COSIT‘’99. Lecture Notes in Computer Science, 1661, 21–36. Barlin: Springer.
Rothkegel, R., Wender, K.F., & Schumacher, S. (1998). Judging spatial relations from memory. Freksa, Ch., Habel, Ch., Wender, K. F. (Eds.): Spatial Cognition. Lecture Notes in Artificial Intelligence 1404. Barlin: Springer. (79–106).
Saade, C. & Werner, S. (in press). Flexibilität mentaler Repräsentationen räumlicher Information in Abhängigkeit von der Erwerbsperspektive. Zeitschrift für Exp. Psychologie
Sadalla, E.K., Staplin, L.J., & Burroughs, W.J. (1979). Retrieval processes in distance cognition. Environment and Behavior, 12, 167–182.
Schölkopf, B. and Mallot, H. A. (1995). View-based cognitive mapping and planning. In Adaptive Behavior 3 (311–348).
Schweizer, K., Herrmann, T., Janzen, G., & Katz, S. (1998). The route direction effect and its constraints. In C. Freksa, C. Habel & K.F. Wender (eds.), Spatial Cognition. Lecture Notes in Artificial Intelligence 1404, 19–38. Barlin: Springer.
Shemyakin, F.N. (1962). Orientation in space. In B.G. Anan’yev et al. (Hrsg.),Psychological Science in the U.S.S.R: (Bd. 1, S. 186–255). Washington, D.C.: U.S.Department of commerce, Office of Technical Services.
Siegel, A.W. & White, S.H. (1975). The development of spatial representations of large-scale environments. In H.W. Reese (Ed.), Advances in Child Development and Behavior (vol. 10, S. 9–55). New York: Academic.
Thorndyke, P.W. & Hayes-Roth, B. (1982). Differences in spatial knowledge ayquired from maps and navigation. Cognitive Psychology, 14, 560–589.
Trullier, O., Wiener, S. I., Bertholz, A., and Meyer, J.-A. (1997). Biogically based artificial navigation systems: Review and prospects. Progress in Neurobiology, 51, 483–544.
Tversky, B. & Lee, P.U. (1998). How space structures language. In C. Freksa, C. Habel & K. F. Wender (eds.), Spatial Cognition (157–175). Barlin: Springer.
v. Frisch, K. (1967). The dance language and orientation of bees. Oxford University Press, London.
Wehner, R. & Menzel, R. (1990). Do insects have cognitive maps? Ann. Rev. Neuroscience. 13, 403–413.
Wehner, R., Michel, B., & Antonsen, P. (1996). Visual navigation in insects: Coupling of egocentric and geocentric information. The Journal of Experimental Biology, 199, 129–140.
Werner, S., Krieg-Brückner, B., Mallot, H.A., Schweizer, K., & Freksa, C. (1997). Spatial cognition: The role of landmark, route, and survey knowledge in human and robot navigation. In M. Jarke, K. Pasedach, & K. Pohl (eds.), Informatik’ 97 (41–50). Barlin: Springer.
Wiltschko, R. & Wiltschko, W. (1999). Compass orientation as a basic element in avian orientation and navigation. In R. Golledge (ed.), Wayfinding behavior (259–293). Baltimore: Johns Hopkins.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2000 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Werner, S., Krieg-Brückner, B., Herrmann, T. (2000). Modelling Navigational Knowledge by Route Graphs. In: Freksa, C., Habel, C., Brauer, W., Wender, K.F. (eds) Spatial Cognition II. Lecture Notes in Computer Science(), vol 1849. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45460-8_22
Download citation
DOI: https://doi.org/10.1007/3-540-45460-8_22
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-67584-6
Online ISBN: 978-3-540-45460-1
eBook Packages: Springer Book Archive