Abstract
We explore different intuitive notions of spatio-temporal continuity and give a formal characterization of continuity for space-time histories. We investigate the types of transitions possible for the RCC-8 topological relations under each distinct notion of spatio-temporal continuity and provide a hierarchy of conceptual neighbourhood diagrams.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
J F Allen, ‘Towards a general theory of action and time’, Artificial Intelligence, 23(2), 123–154, (1984).
R Carnap, Introduction to Symbolic Logic and its Applications, Dover Publications, Inc., New York, 1958. Translated by W H Meyer and J Wilkinson.
B L Clarke, ‘A calculus of individuals based on ‘connection’’, Notre Dame Journal of Formal Logic, 22(3), 204–218, (July 1981).
A G Cohn, B Bennett, J Gooday, and N Gotts, ‘RCC: A Calculus for Region based Qualitative Spatial Reasoning’, GeoInformatica, 1, 275–316, (1997).
A G Cohn and S M Hazarika, ‘Continuous transitions in mereotopology’, in Commonsense-2001: 5th Symp. on Logical Formalizations of Commonsense Reasoning, New York, (2001).
A G Cohn and S M Hazarika, ‘Qualitative spatial representation and reasoning: An overview’, Fundamenta Informaticae, 46(1-2), 1–29, (2001).
A. G. Cohn and A. Varzi, ‘Connection relations in mereotopology’, in Proceedings of ECAI-98, ed., H. Prade, pp. 150–154. John Wiley & Sons, (August 1998).
A G Cohn and A Varzi, ‘Modes of connection’, in Proceedings of COSIT-99, eds., C. Freksa and D.M. Mark, LNCS No. 1661, pp. 299–314. Springer-Verlag, (1999).
E Davis, ‘Continuous shape transformation and metrics of shape’, Fundamenta Informaticae, 46(1-2), 31–54, (2001).
I Düntsch, H Wang, and S McCloskey, ‘A relation-algebraic approach to Region Connection Calculus’, Theoretical Computer Science, 255, 63–83, (2001).
A P Galton, Qualitative Spatial Change, Oxford University Press, 2000.
N M Gotts, J M Gooday, and A G Cohn, ‘A connection based approach to common-sense topological description and reasoning’, The Monist, 79(1), 51–75, (1996).
P. J. Hayes, ‘Naive physics I: Ontology for liquids’, in Formal Theories of the Commonsense World, eds., J. R. Hubbs and R. C. Moore, 71–89, Ablex Publ. Corp., Norwood, NJ, (1985).
M Heller, The Ontology of Physical Objects: Four Dimensional Hunks of Matter, Cambridge University Press, Cambridge, 1990.
NIMA (National Imagery and Mapping Agency), ‘The big idea framework’. Available from http://www.opengis.org/thebigidea/, (2000).
P. Muller, ‘A qualitative theory of motion based on spatio-temporal primitives’, in Proceedings of KR-98, ed., A. G. Cohn et al., pp. 131–141. Morgan Kaufman, (1998).
P. Muller, ‘Space-time as a primitive for space and motion’, in Formal ontology in Information Systems, ed., N. Guarino, pp. 63–76. IOS Press, (1998).
J. Nicod, Geometry in the Sensible World, Doctoral thesis, Sorbonne, 1924. English translation in Geometry and Induction, Routledge and Kegan Paul, 1969.
D. A. Randell, Z. Cui, and A. G. Cohn, ‘A spatial logic based on regions and connection’, in Proceedings of KR-92, ed., B. Nebel et al., pp. 165–176. Morgan Kaufmann, (1992).
B.A.W. Russell, Our Knowledge of the External World, Routledge, 1914.
P Simons, Parts: A Study In Ontology, Clarendon Press, Oxford, 1987.
L Vieu, Sémantique des relations spatiales et inférences spatio-temporelles: une contribution á l’étude des structures formelles de l’espace en langage naturel, Ph.D. dissertation, Université Paul Sabatier, Toulouse, 1991.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2001 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Hazarika, S.M., Cohn, A.G. (2001). Qualitative Spatio-Temporal Continuity. In: Montello, D.R. (eds) Spatial Information Theory. COSIT 2001. Lecture Notes in Computer Science, vol 2205. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45424-1_7
Download citation
DOI: https://doi.org/10.1007/3-540-45424-1_7
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-42613-4
Online ISBN: 978-3-540-45424-3
eBook Packages: Springer Book Archive