When Tables Tell It All: Qualitative Spatial and Temporal Reasoning Based on Linear Orderings | SpringerLink
Skip to main content

When Tables Tell It All: Qualitative Spatial and Temporal Reasoning Based on Linear Orderings

  • Conference paper
  • First Online:
Spatial Information Theory (COSIT 2001)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2205))

Included in the following conference series:

Abstract

In [8] Bennett, Isli and Cohn put out the following challenge to researchers working with theories based on composition tables (CT): give a general characterization of theories and relational constraint languages for which a complete proof procedure can be specified by a CT. For theories based on CTs, they make the distinction between a weak, consistency-based interpretation of the CT, and a stronger extensional definition. In this paper, we take up a limited aspect of the challenge, namely, we characterize a subclass of formalisms for which the weak interpretation can be related in a canonical way to a structure based on a total ordering, while the strong interpretations have the property of aleph-zero categoricity (all countable models are isomorphic).

Our approach is based on algebraic, rather than logical, methods. It can be summarized by two keywords: relation algebra and weak representation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Allen, J. F. Maintaining Knowledge about Temporal Intervals. Comm. of the ACM, 26:11, 832–843, 1983.

    Article  MATH  Google Scholar 

  2. F.D. Anger, D. Mitra, and R.V. Rodriguez. Temporal Constraint Networks in Nonlinear Time. In Proc. of the ECAI-98 Workshop on Spatial and Temporal Reasoning (W22), pages 33–39, Brighton, UK.

    Google Scholar 

  3. P. Balbiani and A. Osmani. A model for reasoning about topologic relations between cyclic intervals. In Proc. of KR-2000, Breckenridge, Colorado, 2000.

    Google Scholar 

  4. Ph. Balbiani, J.-F. Condotta, and L. Fariñas del Cerro. A model for reasoning about bidimensional temporal relations. In Proc. of KR-98, pages 124–130, 1998.

    Google Scholar 

  5. Ph. Balbiani, J.-F. Condotta, and L. Fariñas del Cerro. A new tractable subclass of the rectangle algebra. In Proc. of IJCAI-99, pages 442–447, 1999.

    Google Scholar 

  6. Ph. Balbiani, J.-F. Condotta, and L. Fariñas del Cerro. Spatial reasoning about points in a multidimensional setting. In Proc. of the IJCAI-99 Workshop on Spatial and Temporal Reasoning, pages 105–113, 1999.

    Google Scholar 

  7. Ph. Balbiani, J.-F. Condotta, and L. Fariñas del Cerro. A tractable subclass of the block algebra: constraint propagation and preconvex relations. In Proc. of the Ninth Portuguese Conference on Artificial Intelligence (EPIA’99), pages 75–89, 1999.

    Google Scholar 

  8. B. Bennett, A. Isli, and A. Cohn. When does a Composition Table Provide a Complete and Tractable Proof Procedure for a Relational Constraint Language? In Proc. of the IJCAI-97 Workshop on Spatial and Temporal Reasoning, pages 75–81, Nagoya, Japan, 1997.

    Google Scholar 

  9. M. Broxvall and P. Jonsson. Disjunctive Temporal Reasoning in Partially Ordered Models of Time. In Proc. of AAAI-2000, Austin, Texas, 2000.

    Google Scholar 

  10. M.J. Egenhofer and R. Franzosa. Point-set topological spatial relations. Int. J. Geo. Info. Sys. 5(2), 161–174, 1991.

    Article  Google Scholar 

  11. B. Jónsson and A. Tarski. Boolean algebras with operators, part II. American J. of Mathematics, 74:127–162, 1952.

    Article  MATH  Google Scholar 

  12. P. Ladkin. Models of Axioms for Time Intervals. In Proc. of AAAI-87, 1987.

    Google Scholar 

  13. G. Ligozat. Generalized Intervals: A Guided Tour. In Proc. of the ECAI-98 Workshop on Spatial and Temporal Reasoning (W22), pages 11–18, Brighton, UK, 1998.

    Google Scholar 

  14. G. Ligozat. Weak Representations of Interval Algebras. In Proc. of AAAI-90, pages 715–720, 1990.

    Google Scholar 

  15. G. Ligozat. On generalized interval calculi. In Proc. of AAAI-91, pages 234–240, 1991.

    Google Scholar 

  16. G. Ligozat. Reasoning about Cardinal Directions. J. of Visual Languages and Computing, 9:23–44, 1998.

    Article  Google Scholar 

  17. G. Ligozat. Simple Models for Simple Calculi. In C. Freksa and D.M. Mark, editors, Proc. of COSIT’99, number 1661 in LNCS, pages 173–188. Springer Verlag, 1999.

    Google Scholar 

  18. C.H. Papadimitriou, D. Suciu and V. Vianu. Topological Queries in Spatial Databases. In Proc. ACM SIGACT-SIGMOD-SIGART Symp. on Principles of Database Systems, pages 81–92, 1996.

    Google Scholar 

  19. D. Randell, Z. Cui, and T. Cohn. A spatial logic based on regions and connection. In B. Neumann, editor, Proc. of KR-92, pages 165–176, San Mateo, CA, 1992. Morgan Kaufmann.

    Google Scholar 

  20. J. Renz. A canonical model of the region connection calculus. In Proc. of KR’98, Trento, Italy, 1998.

    Google Scholar 

  21. L. Segoufin and V. Vianu. Querying Spatial Databases via Topological Invariants. In Proc. ACM Symp. on Principles of Database Systems, 1998.

    Google Scholar 

  22. A. Tarski. On the calculus of relations. Journal of Symbolic Logic, 6:73–89, 1941.

    Article  MATH  MathSciNet  Google Scholar 

  23. P.K. Tsang. Foundations of Constraint Satisfaction. Academic Press, 1993.

    Google Scholar 

  24. D. van Dalen. Logic and Structure. Springer, 1997.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ligozat, G. (2001). When Tables Tell It All: Qualitative Spatial and Temporal Reasoning Based on Linear Orderings. In: Montello, D.R. (eds) Spatial Information Theory. COSIT 2001. Lecture Notes in Computer Science, vol 2205. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45424-1_5

Download citation

  • DOI: https://doi.org/10.1007/3-540-45424-1_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42613-4

  • Online ISBN: 978-3-540-45424-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics