Mental Processing of Geographic Knowledge | SpringerLink
Skip to main content

Mental Processing of Geographic Knowledge

  • Conference paper
  • First Online:
Spatial Information Theory (COSIT 2001)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2205))

Included in the following conference series:

  • 1228 Accesses

Abstract

The contribution presents a computational modeling approach to geographic knowledge processing in mind. Geographic knowledge is assumed to be stored in a piecemeal manner. Spatial knowledge fragments form a hierarchical structure of lean knowledge. An actual mental image representation is constructed when needed to perform a specific task. In this construction process missing information is complemented to create a determinate mental image. – First, the artificial intelligence perspective taken is elaborated. After a short review of conceptions on mental processing of spatial knowledge from psychology and artificial intelligence we outline the model MIRAGE. The internal structure and the operating of the model is elaborated using an exemplary scenario. Problems in constructing mental images from given pieces of knowledge are demonstrated and discussed. The paper concludes with a discussion of the approach with respect to its modeling objective. We point to further research questions and to potential applications.

Support by the Deutsche Forschungsgemeinschaft (DFG) is gratefully acknowledged (grant Fr 806-8, Spatial Cognition Priority Program).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Anderson, J. R. (1978). Arguments concerning representations for mental imagery. Psychological Review, 85(4), 249–277.

    Article  Google Scholar 

  • Appleyard, D. (1970). Styles and methods of structuring a city. Environment and Behavior, 2, 100–118.

    Article  Google Scholar 

  • Baddeley, A. D. (1986). Working memory. New York: Oxford University Press.

    Google Scholar 

  • Braitenberg, V. (1984). Vehicles–Experiments in synthetic psychology. Cambridge, MA: MIT Press.

    Google Scholar 

  • Bransford, J. D., Barclay, J. R., & Franks, J. J. (1972). Sentence memory: A constructive versus interpretative approach. Cognitive Psychology, 3, 193–209.

    Article  Google Scholar 

  • Cohn, A. G. (1997). Qualitative spatial representation and reasoning techniques. In G. Brewka, C. Habel, & B. Nebel (Eds.), KI-97: Advances in Artificial Intelligence (pp. 1–30). Berlin: Springer.

    Google Scholar 

  • Couclelis, H. (1992). People manipulate objects (but cultivate fields): Beyond the raster-vector debate in GIS. In A. U. Frank, I. Campari, & U. Formentini (Eds.), Theories and methods of spatio-temporal reasoning in geographic space (pp. 65–77). Berlin: Springer.

    Google Scholar 

  • Downs, R. M., & Stea, D. (1977). Maps in minds: reflections on cognitive mapping. New York: Harper & Row.

    Google Scholar 

  • Finke, R. (1989). Principles of mental imagery. Cambridge, MA: MIT-Press.

    Google Scholar 

  • Frank, A. (1992). Qualitative spatial reasoning with cardinal directions. Proc. of the Seventh Austrian Conference on Artificial Intelligence, Vienna (pp. 157–167). Berlin: Springer.

    Google Scholar 

  • Freksa, C., Barkowsky, T., & Klippel, A. (1999). Spatial symbol systems and spatial cognition: A computer science perspective on perception-based symbol processing. Behavioral and Brain Sciences, 22(4), 616–617.

    Article  Google Scholar 

  • Freksa, C., & Röhrig, R. (1993). Dimensions of qualitative spatial reasoning. In N. P. Carreté & M. G. Singh (Eds.), Qualitative reasoning and decision technologies, Proc. QUARDET’93 (pp. 483–492). Barcelona.

    Google Scholar 

  • Friedman, A., & Brown, N. R. (2000). Reasoning about geography. Journal of Experimental Psychology: General, 129(2), 193–219.

    Article  Google Scholar 

  • Glasgow, J., Narayanan, H., & Chandrasekaran, B. (Eds.) (1995). Diagrammatic reasoning: Computational and cognitive perspectives. Cambridge, MA: MIT-Press.

    Google Scholar 

  • Glasgow, J., & Papadias, D. (1992). Computational imagery. Cognitive Science, 16, 355–394.

    Article  Google Scholar 

  • Hegarty, M. (2000). Capacity limits in diagrammatic reasoning. In M. Anderson, P., Cheng., & V. Haarslev (Eds.), Theory and application of diagrams (pp. 194–206). Berlin: Springer.

    Chapter  Google Scholar 

  • Hirtle, S. C. (1998). The cognitive atlas: using GIS as a metaphor for memory. In M. Egenhofer & R. Golledge (Eds.), Spatial and temporal reasoning in geographic information systems (pp. 267–276). Oxford University Press.

    Google Scholar 

  • Hirtle, S. C., & Heidorn, P. B. (1993). The structure of cognitive maps: Representations and processes. In T. Gärling & R. G. Golledge (Eds.), Behavior and environment: Psychological and geographical approaches (pp. 170–192). Amsterdam: North-Holland.

    Chapter  Google Scholar 

  • Hirtle, S. C., & Jonides J. (1985). Evidence of hierarchies in cognitive maps. Memory & Cognition, 13(3), 208–217.

    Google Scholar 

  • Intraub, H., & Hoffman, J. E. (1992). Reading and visual memory: Remembering scenes that were never seen. American Journal of Psychology, 105(1), 101–114.

    Article  Google Scholar 

  • Johnson-Laird, P. N. (1983). Mental models. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Koedinger, K. R. (1992). Emergent properties and structural constraints: Advantages of diagrammatic representations for reasoning and learning. AAAI Spring Symposion on Reasoning with Diagrammatic Representations, Stanford University, March 27–29.

    Google Scholar 

  • Kosslyn, S. M. (1980). Image and mind. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Kosslyn, S. M. (1987). Seeing and imagining in the cerebral hemispheres: a computational approach. Psychological Review, 94, 148–175.

    Article  Google Scholar 

  • Kosslyn, S. M. (1994). Image and brain–The resolution of the imagery debate. Cambridge, MA: MIT Press.

    Google Scholar 

  • Kosslyn, S. M., & Shin, L. M. (1994). Visual mental images in the brain: Current issues. In M. J. Farah & G. Ratcliff (Eds.), The neuropsychology of high-level vision (pp. 269–296). Hillsdale, NJ: Lawrence Erlbaum.

    Google Scholar 

  • Kuhn, W. (1993). Metaphors create theories for users. In A. U. Frank & I. Campari (Eds.), Spatial information theory–A theoretical basis for GIS (pp. 366–376). Berlin: Springer.

    Google Scholar 

  • Kuipers, B. (1982). The ‘map in the head’ metaphor. Environment and Behavior, 14(2), 202–220.

    Article  MathSciNet  Google Scholar 

  • Larkin, J. H., & Simon, H. A. (1987). Why a diagram is (sometimes) worth ten thousand words. Cognitive Science, 11, 65–99.

    Article  Google Scholar 

  • Lee, T. R. (1968). Urban neighborhood as a socio-spatial schema. Human Relations, 21, 241–268.

    Article  Google Scholar 

  • Lynch, K. (1960). The image of the city. Cambridge, MA: MIT Press.

    Google Scholar 

  • McNamara, T. P., Hardy, J. K., & Hirtle, S. C. (1989). Subjective hierarchies in spatial memory. Journal of Experimental Psychology: Learning, Memory and Cognition, 15(2), 211–227.

    Article  Google Scholar 

  • Montello, D. R. (1992). The geometry of environmental knowledge. In A. U. Frank, I. Campari, & U. Formentini (Eds.), Theories and methods of spatio-temporal reasoning in geographic space (pp. 136–152). Berlin: Springer.

    Google Scholar 

  • Montello, D. R. (1998). A new framework for understanding the acquisition of spatial knowledge in large-scale environments. In M. J. Egenhofer & R. G. Golledge (Eds.), Spatial and temporal reasoning in geographic information systems (pp. 143–154). New York: Oxford University Press.

    Google Scholar 

  • Paivio, A. (1971). Imagery and language. In S. J. Segal (Ed.), Imagery: Current cognitive approaches (pp. 7–32). New York: Holt, Rinehart & Winston.

    Google Scholar 

  • Peterson, M. (1995). Interactive and animated cartography. Englewood Cliffs, NJ: Prentice Hall.

    Google Scholar 

  • Portugali, J. (Ed.) (1996a). The construction of cognitive maps. Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  • Portugali, J. (1996b). Inter-representation networks and cognitive maps. In J. Portugali (Ed.), The construction of cognitive maps (pp. 11–43). Dordrecht: Kluwer Academic Publishers.

    Chapter  Google Scholar 

  • Schacter, D. L., Cooper, L. A., Delaney, S. M., Peterson, M. A., & Tharan, M. (1991). Implicit memory for possible and impossible objects: Constraints on the construction of structural descriptions. Journal of Experimental Psychology: Learning, Memory, and Cognition, 17, 3–19.

    Article  Google Scholar 

  • Schlieder, C. (1999). The construction of preferred mental models in reasoning with interval relations. In G. Rickheit & C. Habel (Eds.), Mental models in discourse processing and reasoning (pp. 333–357). Amsterdam: North-Holland.

    Chapter  Google Scholar 

  • Sloman, A. (1994). Explorations in design space. In A. G. Cohn (Ed.), Proceedings of the 11th Conference on Artificial Intelligence (ECAI’94) (pp. 578–582). Chichester et al.: Wiley.

    Google Scholar 

  • Stevens, A., & Coupe. P. (1978). Distortions in judged spatial relations. Cognitive Psychology, 10, 422–437.

    Article  Google Scholar 

  • Sulin, R. A., & Dooling, D. J. (1974). Intrusion of a thematic idea in retention of prose. Journal of Experimental Psychology, 103, 255–262.

    Article  Google Scholar 

  • Tolman, E. C. (1948). Cognitive maps in rats and men. The Psychological Review, 55(4), 189–208.

    Article  Google Scholar 

  • Tversky, B. (1991). Spatial mental models. The Psychology of Learning and Motivation, 27, 109–145.

    Article  Google Scholar 

  • Tversky, B. (1992). Distortions in cognitive maps. Geoforum, 23(2), 131–138.

    Article  Google Scholar 

  • Tversky, B. (1993). Cognitive maps, cognitive collages, and spatial mental models. In A. Frank & I. Campari (Eds.), Spatial information theory (pp. 14–24). Berlin: Springer.

    Google Scholar 

  • Vieu, L. (1997). Spatial representation and reasoning in artificial intelligence. In O. Stock (Ed.), Spatial and temporal reasoning (pp. 5–41). Dordrecht: Kluwer Academic Publishers.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Barkowsky, T. (2001). Mental Processing of Geographic Knowledge. In: Montello, D.R. (eds) Spatial Information Theory. COSIT 2001. Lecture Notes in Computer Science, vol 2205. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45424-1_25

Download citation

  • DOI: https://doi.org/10.1007/3-540-45424-1_25

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42613-4

  • Online ISBN: 978-3-540-45424-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics