Gabor Wavelet Networks for Object Representation | SpringerLink
Skip to main content

Gabor Wavelet Networks for Object Representation

  • Conference paper
  • First Online:
Multi-Image Analysis

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2032))

Abstract

In this article we want to introduce first the Gabor wavelet network as a model based approach for an effective and efficient object representation. The Gabor wavelet network has several advantages such as invariance to some degree with respect to translation, rotation and dilation. Furthermore, the use of Gabor filters ensured that geometrical and textural object features are encoded. The feasibility of the Gabor filters as a model for local object features ensures a considerable data reduction while at the same time allowing any desired precision of the object representation ranging from a sparse to a photo-realistic representation. In the second part of the paper we will present an approach for the estimation of a head pose that is based on the Gabor wavelet networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C.M. Bishop. Neural Networks for Pattern Recognition. Clarendon Press, Oxford, 1995.

    Google Scholar 

  2. J. Bruske, E. Abraham-Mumm, J. Pauli, and G. Sommer. Head-pose estimation from facial images with subspace neural networks. In Proc. of Int. Neural Network and Brain Conference, pages 528–531, Beijing, China, 1998.

    Google Scholar 

  3. J. Bruske and G. Sommer. Intrinsic dimensionality extimation with optimally topology preserving maps. IEEE Trans. Pattern Analysis and Machine Intelligence, 20(5):572–575, 1998.

    Article  Google Scholar 

  4. Q. Chen, H. Wu, T. Fukumoto, and M. Yachida. 3d head pose estimation without feature tracking. In Proc. Int. Conf. on Automatic Face and Gesture-Recognition, pages 88–93, Nara, Japan, April 14-16, 1998.

    Google Scholar 

  5. T.F. Cootes, G.J. Edwards, and C.J. Taylor. Active appearance models. In Proc. Fifth European Conference on Computer Vision, volume 2, pages 484–498, Freiburg, Germany, June 1-5, 1998.

    Google Scholar 

  6. T. Darrell, B. Moghaddam, and A. Pentland. Active face tracking and pose estimation in an interactive room. In IEEE Conf. Computer Vision and Pattern Recognition, CVPR, pages 67–72, Seattle, WA, June 21-23, 1996.

    Google Scholar 

  7. I. Daubechies. Orthonormal bases of compactly supported wavelets. Commun. Pure Appl. Math, 41:909–996, 1988.

    Article  MATH  MathSciNet  Google Scholar 

  8. I. Daubechies. The wavelet transform, time-frequency localization and signal analysis. IEEE Trans. Informat. Theory, 36, 1990.

    Google Scholar 

  9. J. Daugman. Complete discrete 2D Gabor transform by neural networks for image analysis and compression. IEEE Trans. Acoustics, Speech, and Signal Processing, 36(7):1169–1179, 1988.

    Article  MATH  Google Scholar 

  10. G.J. Edwards, T.F. Cootes, and C.J. Taylor. Face recognition using active appearance models. In Proc. Fifth European Conference on Computer Vision, volume 2, pages 581–595, Freiburg, Germany, June 1-5, 1998.

    Google Scholar 

  11. A. Gee and R. Cipolla. Determining the gaze of faces in images. Image and Vision Computing, 12(10):639–647, 1994.

    Article  Google Scholar 

  12. A. Grossmann and J. Morlet. Decomposition of hardy functions into square integrable wavlets of constant shape. SIAM J. Math Anal., 15:723–736, 1984.

    Article  MATH  MathSciNet  Google Scholar 

  13. R. Herpers, H. Kattner, H. Rodax, and G. Sommer. Gaze: An attentive processing strategy to detect and analyze t he prominent facial regions. In Proc. Int. Workshop on Automatic Face and Gesture-Recognition, pages 214–220, Zurich, Switzerland, June 26-28, 1995.

    Google Scholar 

  14. I. Jolliffe. Principal Component Analysis. Springer Verlag, New York, 1986.

    Google Scholar 

  15. V Krüger, Sven Bruns, and G. Sommer. Efficient head pose estimation with gabor wavelet networks. In Proc. British Machine Vision Conference, Bristol, UK, Sept. 12-14, 2000.

    Google Scholar 

  16. V Kruger and G. Sommer. A-ne real-time face tracking using gabor wavelet networks. In Proc. Int. Conf. on Pattern Recognition, Barcelona, Spain, Sept. 3-8, 2000.

    Google Scholar 

  17. T. S. Lee. Image representation using 2D Gabor wavelets. IEEE Trans. Pattern Analysis and Machine Intelligence, 18(10):959–971, 1996.

    Article  Google Scholar 

  18. S. Mallat. Multifrequency channel decompositions of images and wavelet models. IEEE Trans. on Acoustic, Speech, and Signal Processing, 37(12):2091–2110, Dec. 1989.

    Article  Google Scholar 

  19. S. Mallat. A theory for multiresolution signal decomposition: The wavelet representation. IEEE Trans. Pattern Analysis and Machine Intelligence, 11(7):674–693, 1989.

    Article  MATH  Google Scholar 

  20. B.S. Manjunath and R. Chellappa. A unified approach to boundary perception: edges, textures, and illusory contours. IEEE Trans. Neural Networks, 4(1):96–107, 1993.

    Article  Google Scholar 

  21. R. Mehrotra, K.R. Namuduri, and R. Ranganathan. Gabor filter-based edge detection. Pattern Recognition, 52(12):1479–1494, 1992.

    Article  Google Scholar 

  22. B. Moghaddam and A. Pentland. Probabilistic visual learning for object detection. IEEE Trans. Pattern Analysis and Machine Intelligence, 17(7):696–710, Juli 1997.

    Article  Google Scholar 

  23. Eleni Petraki. Analyse der blickrichtung des menschen und er kopforientierung im raum mittels passiver bildanalyse. Master’s thesis, Technical University of Hamburg-Harburg, 1996.

    Google Scholar 

  24. H. Ritter, T. Martinez, and K. Schulten. Neuronale Netze. Addison-Wesley, 1991.

    Google Scholar 

  25. B. Schiele and A. Waibel. Gaze tracking based on face-color. In Proc. Int. Workshop on Automatic Face and Gesture-Recognition, pages 344–349, Zurich, Switzerland, June 26-28, 1995.

    Google Scholar 

  26. H. Szu, B. Telfer, and S. Kadambe. Neural network adaptive wavelets for signal representation and classiffication. Optical Engineering, 31(9):1907–1961, 1992.

    Article  Google Scholar 

  27. K. Toyama and G. Hager. Incremental focus of attention for robust visual tracking. In IEEE Conf. Computer Vision and Pattern Recognition, CVPR, pages 189–195, 1996.

    Google Scholar 

  28. J.K. Tsotsos. Analyzing vision at the complexity level. Behavioral and Brain Sci., 13:423–469, 1990.

    Google Scholar 

  29. M. Turk and A. Pentland. Eigenfaces for recognition. Int. Journal of Cognitive Neuroscience, 3(1):71–89, 1991.

    Article  Google Scholar 

  30. A.C. Varchmin, R. Rae, and H. Ritter. Image based recognition of gaze direction using adaptive methods. In I. Wachsmuth, editor, Proceedings of the International Gesture Workshop, lncs, pages 245–257. Springer, 1997.

    Google Scholar 

  31. L. Wiskott, J. M. Fellous, N. Kruger, and C. v. d. Malsburg. Face recognition by elastic bunch graph matching. IEEE Trans. Pattern Analysis and Machine Intelligence, 19(7):775–779, July 1997.

    Article  Google Scholar 

  32. M. Xu and T. Akatsuka. Detecting head pose from stereo image sequences for active face recognition. In Proc. Int. Conf. on Automatic Face and GestureRecognition, pages 82–87, Nara, Japan, April 14-16, 1998.

    Google Scholar 

  33. Yale Face Database. Yale university. http://cvc.yale.edu/projects/yalefaces/yalefaces.html.

  34. Q. Zhang and A. Benveniste. Wavelet networks. IEEE Trans. Neural Networks, 3(6):889–898, Nov. 1992.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Krüger, V., Sommer, G. (2001). Gabor Wavelet Networks for Object Representation. In: Klette, R., Gimel’farb, G., Huang, T. (eds) Multi-Image Analysis. Lecture Notes in Computer Science, vol 2032. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45134-X_9

Download citation

  • DOI: https://doi.org/10.1007/3-540-45134-X_9

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42122-1

  • Online ISBN: 978-3-540-45134-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics