Towards Segmentation from Multiple Cues: Symmetry and Color | SpringerLink
Skip to main content

Towards Segmentation from Multiple Cues: Symmetry and Color

  • Conference paper
  • First Online:
Multi-Image Analysis

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2032))

Abstract

Towards segmentation from multiple cues, this paper demonstrates the combined use of color and symmetry for detecting regions of interest (ROI), using the detection of man-made wooden objects and the detection of faces as working examples. A functional that unifies color compatibility and color-symmetry within elliptic supports is defined. Using this functional, the ROI detection problem becomes a five-dimensional global optimization problem. Exhaustive-search is inapplicable due its prohibitive computational cost. Genetic search converges rapidly and provides good results. The added value obtained by combining color and symmetry is demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T.C. Chang and T.S. Huang, “Facial feature extraction from color images”, Proc. International Conference on Pattern Recognition, Vol. 1, pp. 39–43, Jerusalem, 1994.

    Google Scholar 

  2. R. Chellappa, C.L. Wilson and S. Sirohey, “Human and machine recognition of faces: A survey”, IEEE Proceedings, Vol. 83, pp. 705–740, 1995.

    Article  Google Scholar 

  3. A.J. Colmenarez and T.S. Huang, “Frontal view face detection”, SPIE Vol. 2501, pp. 90–98, 1995.

    Article  Google Scholar 

  4. T. Kondo and H. Yan, “Automatic human face detection and recognition under non-uniform illumination”, Pattern Recognition, Vol. 32, pp. 1707–1718, 1999.

    Article  Google Scholar 

  5. Y. Ohta, T. Kanade and T. Sakai, “Color information for region segmentation”, Computer Graphics and Image Processing, Vol. 13, pp. 222–241, 1980.

    Article  Google Scholar 

  6. T. Gevers and A.W.M. Smeulders, “Color-based object recognition”, Pattern Recognition, Vol. 32, pp. 453–464, 1999.

    Article  Google Scholar 

  7. S.J. McKenna, S. Gong and Y. Raja, “Modelling facial colour and identity with gaussian mixtures”, Pattern Recognition, Vol. 31, pp. 1883–1892, 1998. Towards Segmentation from Multiple Cues 151

    Article  Google Scholar 

  8. H.A. Rowley, S. Baluja and T. Kanade, “Neural network-based face detection”, IEEE Trans. Pattern Analysis and Machine Intelligence, Vol. 20, pp. 23–38, 1998.

    Article  Google Scholar 

  9. Q.B. Sun, W.M. Huang and J.K. Wu, “Face detection based on color and local symmetry information”, Proc. 3rd IEEE Int. Conf. on Automatic Face and Gesture Recognition, pp. 130–135, Nara, Japan, 1998.

    Google Scholar 

  10. The Psychological Image Collection at Stirling (PICS), University of Stirling Psychology Department, http://pics.psych.stir.ac.uk.

  11. E. Saber and A.M. Tekalp, “Frontal-view face detection and facial feature extraction using color, shape and symmetry based cost function”, Pattern Recognition Letters, Vol. 19, pp. 669–680, 1998.

    Article  MATH  Google Scholar 

  12. A. Samal and P.A. Iyengar, “Automatic recognition and analysis of human faces and facial expressions: A survey”, Pattern Recognition, Vol. 25, pp. 65–77, 1992.

    Article  Google Scholar 

  13. J.C. Terrillon, M. David and S. Akamatsu, “Detection of human faces in complex scene images by use of a skin color model and of invariant fourier-mellin moments”, Proc. 14th International Conference on Pattern Recognition, pp. 1350–1356, Brisbane, 1998.

    Google Scholar 

  14. H. Wu, Q. Chen and M. Yachida, “Face detection from color images using a fuzzy pattern matching method”, IEEE Trans. Pattern Analysis and Machine Intelligence, Vol. 21, pp. 557–563, 1999.

    Article  Google Scholar 

  15. D. Beasley, D.R. Bull and R.R. Martin, “A sequential niche technique for multimodal function optimization”, Evolutionary Computation, Vol. 1, pp. 101–125, 1993.

    Article  Google Scholar 

  16. J. Bigun, “Recognition of local symmetries in gray value images by harmonic functions”, Proc. International Conference on Pattern Recognition, pp. 345–347, Rome, 1988.

    Google Scholar 

  17. M. Gardner, The New Ambidextrous Universe Symmetry and Asymmetry from Mirror Reflections to Superstrings, Freeman, New York, 1979.

    Google Scholar 

  18. J.M. Gauch and S.M. Pizer, “The intensity axis of symmetry and its application to image segmentation”, IEEE Trans. Pattern Analysis and Machine Intelligence, Vol. 15, pp. 753–770, 1993.

    Article  Google Scholar 

  19. D.E. Goldberg and J. Richardson, “Genetic algorithms with sharing for multimodal function optimization”, Proc. 2nd Int. Conf. on Genetic Algorithms, pp. 41–49, Cambridge, Mass., 1987.

    Google Scholar 

  20. J.H. Holland, “Genetic algorithms”, Scientific American, pp. 44–50, 1992.

    Google Scholar 

  21. M.F. Kelly and M.D. Levine, “Annular symmetry operators: a method for locating and describing objects”, Proc. Int. Conf. on Computer Vision (ICCV), pp. 1016–1021, Cambridge, Mass., 1995.

    Google Scholar 

  22. N. Kiryati and Y. Gofman, “Detecting symmetry in grey level images: the global optimization approach”, International Journal of Computer Vision, Vol. 29, pp. 29–45, 1998.

    Article  Google Scholar 

  23. G. Marola, “On the detection of the axes of symmetry of symmetric and almost symmetric planar images”, IEEE Trans. Pattern Anal. Machine Intell., Vol. 11, p.. 104–108, 1989.

    Article  MATH  Google Scholar 

  24. B.L. Miller and M.J. Shaw, “Genetic algorithms with dynamic niche sharing for multimodal function optimization”, IlliGAL Report No. 95010, University of Illinois, department of general engineering, 1995. Available At http://gal4.ge.uiuc.edu

  25. T.R. Reed and H. Wechsler, “Segmentation of textured images and gestalt organization using spatial/spatial-frequency representations”, IEEE Trans. Pattern Anal. Machine Intell., Vol. 12, pp. 1–12, 1990.

    Article  Google Scholar 

  26. D. Reisfeld, H. Wolfson and Y. Yeshurun, “Context free attentional operators: the generalized symmetry transform”, Int. J. Computer Vision, Vol. 14, pp. 119–130, 1995.

    Article  Google Scholar 

  27. A. Törn and A.-Zilinskas, Global Optimization, Lecture Notes in Computer Science #350, Springer-Verlag, 1989.

    MATH  Google Scholar 

  28. L. Van Gool, T. Moons, D. Ungureanu and E. Pauwels, “Symmetry from shape and shape from symmetry”, Int. J. Robotics Research, Vol. 14, pp. 407–424, 1995.

    Article  Google Scholar 

  29. H. Weyl, Symmetry, Princeton University Press, 1952.

    Google Scholar 

  30. J.G. Wang and E. Sung, “Frontal-view face detection and facial feature extraction using color and morphological operations”, Pattern Recognition Letters, Vol. 20, pp. 1053–1068, 1999.

    Article  Google Scholar 

  31. A. YläJääski and F. Ade, “Grouping symmetrical structures for object segmentation and description”, Computer Vision and Image Understanding, Vol. 63, pp. 399–417, 1996.

    Article  Google Scholar 

  32. H. Zabrodsky, S. Peleg and D. Avnir, “Symmetry as a continuous feature”, IEEE Trans. Pattern Anal. Machine Intell., Vol. 17, pp. 1154–1166, 1995.

    Article  Google Scholar 

  33. J. Yang and A. Weibel, “Tracking human faces in real-time”, Technical Report CMU-CS-95-210, Carnegie Mellon University, 1995.

    Google Scholar 

  34. T. Zielke, M. Brauckmann and W. Von Seelen, “Intensity and edge based symmetry detection with application to car following”, CVGIP: Image Understanding, Vol. 58, pp. 177–190, 1993.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Shor, R., Kiryati, N. (2001). Towards Segmentation from Multiple Cues: Symmetry and Color. In: Klette, R., Gimel’farb, G., Huang, T. (eds) Multi-Image Analysis. Lecture Notes in Computer Science, vol 2032. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45134-X_11

Download citation

  • DOI: https://doi.org/10.1007/3-540-45134-X_11

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42122-1

  • Online ISBN: 978-3-540-45134-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics