Grouping Character Shapes by Means of Genetic Programming | SpringerLink
Skip to main content

Grouping Character Shapes by Means of Genetic Programming

  • Conference paper
  • First Online:
Visual Form 2001 (IWVF 2001)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2059))

Included in the following conference series:

  • 813 Accesses

Abstract

In the framework of an evolutionary approach to machine learning, this paper presents the preliminary version of a learning system that uses Genetic Programming as a tool for automatically inferring the set of classification rules to be used by a hierarchical handwritten character recognition system. In this context, the aim of the learning system is that of producing a set of rules able to group character shapes, described by using structural features, into super-classes, each corresponding to one or more actual classes. In particular, the paper illustrates the structure of the classification rules and the grammar used to generate them, the genetic operators devised to manipulate the set of rules and the fitness function used to match the current set of rules against the sample of the training set. The experimental results obtained by using a set of 5,000 digits randomly extracted from the NIST database are eventually reported and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Fukunaga, K.; Narendra, P. M. 1975. A Branch and Bound Algorithm for Computing K‐Nearest Neighbors. IEEE Trans. on Computers C-24:750–753.

    Article  MathSciNet  Google Scholar 

  2. Marcelli, A.; Pavlidis, T. 1994. Using Projections for Preclassification of Character Shape. In Document Recognition. L.M. Vincent, T. Pavlidis (eds.), Los Angeles: SPIE, 2181:4–13.

    Google Scholar 

  3. Marcelli, A.; Likhareva, N.; Pavlidis, T. 1997. Structural Indexing for Character Recognition. Computer Vision and Image Understanding, 67(1): 330–346.

    Article  Google Scholar 

  4. Mori, S.; Yamamoto, k.; Yasuda, M. 1984. Research on Machine Recognition od Handprinted Characters. IEEE Trans. on PAMI, PAMI-6: 386–405.

    Google Scholar 

  5. De Stefano, C.; Della Cioppa, A.; and Marcelli, A. 1999. Handwritten numerals recognition by means of evolutionary algorithms. In Proc. of the 3th Int. Conf. on Document Analysis and Recognition, 804–807.

    Google Scholar 

  6. Koza, J. R. 1992. Genetic Programming: On the Programming of Computers by Natural Selection. Cambridge, MA: MIT Press.

    MATH  Google Scholar 

  7. Koza, J. R. 1994. Genetic Programming II: Automatic Discovery of Reusable Programs. Cambridge, MA: MIT Press.

    MATH  Google Scholar 

  8. Boccignone, G. 1990. Using skeletons for OCR. V. Cantoni et al. eds., Progress in Image Analysis and Processing, 235–282.

    Google Scholar 

  9. Cordella, L. P.; De Stefano, C.; and Vento, M. 1995. Neural network classifier for OCR using structural descriptions. Machine Vision and Applications 8(5):336–342.

    Google Scholar 

  10. Goldberg, D. E. 1989. Genetic algorithms in search, optimization, and machine learning. Reading, MA: Addison‐Wesley.

    MATH  Google Scholar 

  11. Deb, K., and Goldberg, D. E. 1989. An investigation of niche and species formation in genetic function optimization. In Schaffer, J. D., ed., Proc. of the 3th Int. Conf. on Genetic Algorithms, 42–50. San Mateo, CA: Morgan Kaufmann.

    Google Scholar 

  12. Mahfoud, S. 1994. Genetic drift in sharing methods. In Proceedings of the First IEEE Conference on Evolutionary Computation, 67–72.

    Google Scholar 

  13. Booker, L. B.; Goldberg, D. E.; and Holland, J. H. 1989. Classifier Systems and Genetic Algorithms. In Artificial Intelligence, volume 40. 235–282.

    Article  Google Scholar 

  14. Forrest, S.; Javornik, B.; Smith, R. E.; and Perelson, A. S. 1993. Using genetic algorithms to explore pattern recognition in the immune system. Evolutionary Computation 1(3):191–211.

    Article  Google Scholar 

  15. Horn, J.; Goldberg, D. E.; and Deb, K. 1994. Implicit Niching in a Learning Classifier System: Nature’s Way. Evolutionary Computation 2(1):37–66.

    Article  Google Scholar 

  16. Baker, J. E. 1987. Reducing bias and ineciency in the selection algorithm. In Grefenstette, J. J., ed., Genetic algorithms and their applications: Proc. of the 2th Int. Conf. on Genetic Algorithms, 14–21. Hillsdale, NJ: Lawrence Erlbaum Assoc.

    Google Scholar 

  17. Li, M.; Vitányi, P. 1997. An Introduction to Kolmogorov Complexity and its Applications. Series: Graduate text in computer Science. Springer-Verlag, New York.

    Google Scholar 

  18. Conte, M.; De Falco, I.; Della Cioppa, A.; Tarantino, E.; and Trautteur, G. 1997. Genetic Programming Estimates of Kolmogorov Complexity. Proc. of the Seventh Int. Conf. on Genetic Algorithms (ICGA’97), 743–750. Morgan‐Kaufmann.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

De Stefano, C., Della Cioppa, A., Marcelli, A., Matarazzo, F. (2001). Grouping Character Shapes by Means of Genetic Programming. In: Arcelli, C., Cordella, L.P., di Baja, G.S. (eds) Visual Form 2001. IWVF 2001. Lecture Notes in Computer Science, vol 2059. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45129-3_46

Download citation

  • DOI: https://doi.org/10.1007/3-540-45129-3_46

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42120-7

  • Online ISBN: 978-3-540-45129-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics