Abstract
We present the model of a Geometric Agent that can navigate on routes in a virtual planar environment according to natural-language instructions presented in advance. The Geometric Agent provides a new method to study the interaction between the spatial information given in route instructions and the spatial information gained from perception. Perception and action of the Geometric Agent are simulated. Therefore, the influence of differences in both linguistic and perceptual skills can be subject to further studies employing the Geometric Agent. The goal of this investigation is to build a formal framework that can demonstrate the performance of specific theories of the interpretation of natural-language in the presence of sensing. In this article, we describe the main sub-tasks of instructed navigation and the internal representations the Geometric Agent builds up in order to carry them out.
The research reported in this article was supported by the Deutsche Forschungsgemeinchaft (DFG) and carried out in the context of the project “Axiomatik räumlicher Konzepte” (HA 1237-7) that is imbedded in the priority program on “Spatial Cognition”. We thank the participants of the “route instruction” project (acadamic year 2001/02) for support in the collection of verbal data and the analysis of navigation tasks, and two anonymous reviewers for helpful comments and suggestions.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Agre, P. E. & Chapman, D. (1990). What are plans for? Robotics and Autonomous Systems, 6. 17–34.
Allen, G. L. (1997). From knowledge to words to wayfinding: Issues in the production and comprehension of route directions. In S.C. Hirtle & A.U. Frank (eds.), Spatial Information Theory (pp. 363–372). Berlin: Springer.
Barsalou, L. W. (1999). Perceptual symbol systems. Behavioral and Brain Sciences, 22. 577–660.
Crangle, C. & P. Suppes (1994). Language and Learning for Robots. Stanford: CSLI.
Denis, M. (1997). The description of routes: A cognitive approach to the production of spatial discourse. Cahiers de Psychologie Cognitive 16. 409–458.
Eschenbach, C. (1999). Geometric structures of frames of reference and natural language semantics. Spatial Cognition and Computation 1. 329–348.
Eschenbach, C. & L. Kulik (1997). An axiomatic approach to the spatial relations underlying ‘left’-‘right’ and ‘in front of’-;‘behind’. In G. Brewka, C. Habel & B. Nebel (eds.), KI-97: Advances in Artificial Intelligence (pp. 207–218). Berlin: Springer-Verlag.
Eschenbach, C., L. Tschander, C. Habel & L. Kulik (2000). Lexical specifications of paths. In C. Freksa, W. Brauer, C. Habel & K.F. Wender (eds.), Spatial Cognition II (pp. 127–144). Berlin: Springer-Verlag.
Fontaine, S. & M. Denis (1999). The production of route instructions in underground and urban environments. In C. Freksa & D.M. Mark (eds.), Spatial Information Theory (pp. 83–94). Berlin: Springer.
Fraczak, L. (1998). Generating ‘mental maps’ from route descriptions. In P. Olivier & K.-P. Gapp (eds.), Representation and Processing of Spatial Expressions (pp. 185–200). Mahwah, NJ: Lawrence Erlbaum.
Frank, A. (2000). Spatial communication with maps: Defining the correctness of maps using a multi-agent simulation. In C. Freksa, W. Brauer, C. Habel & K.F. Wender (eds.), Spatial Cognition II (pp. 80–99). Berlin: Springer-Verlag.
Habel, C. (1987). Cognitive linguistics: The processing of spatial concepts. T. A. Informations (Bulletin semestriel de l’ATALA, Association pour le traitement automatique du langage) 28. 21–56.
Habel, C., S. Pribbenow & G. Simmons (1995). Partonomies and depictions: A hybrid approach. In J. Glasgow, H. Narayanan & B. Chandrasekaran (eds.): Diagrammatic Reasoning: Cognitive and Computational Perspectives (pp. 627–653). Cambridge, MA: MIT-Press.
Jackendoff, R. (1990). Semantic Structures. Cambridge: MIT-Press.
Kaufmann, I. (1995). Konzeptuelle Grundlagen semantischer Dekompositionsstrukturen. Tübingen: Niemeyer.
Klein, W. (1979). Wegauskünfte. Zeitschrift für Literaturwissenschaft und Linguistik 33. 9–57.
Klein, W. (1982). Local deixis in route directions. In R.J. Jarvella & W. Klein (eds.), Speech, Place, and Action (pp. 161–182). Chichester: Wiley.
Labrou, Y., Finin, T. & Peng, Y. (1999). Agent communication languages: The current landscape. IEEE Intelligent Systems, 14. 45–52.
Levinson, S. (1996). Frames of reference and Molyneux’s question: crosslinguistic evidence. In P. Bloom, M. A. Peterson, L. Nadel & M. F. Garrett (eds.), Language and Space (pp. 109–169). Cambridge MA: MIT Press.
Ligozat, G. (2000). From language to motion, and back: Generating and using route descriptions. In D.N. Chistodoulakis (ed.) NLP 2000, LNCS 1835. pp. 328–345.
Lovelace, K. L., M. Hegarty & D. R. Montello (1999). Elements of good route directions in familiar and unfamiliar environments. In C. Freksa & D.M. Mark (eds.), Spatial Information Theory. (pp. 65–82). Berlin: Springer.
Mallot, H. A. (1999). Spatial cognition: Behavioral competences, neural mechanisms, and evolutionary scaling. Kognitionswissenschaft 8. 40–48.
Mann, G. (1996). Control of a Navigating Rational Agent by Natural Language. PhD Thesis. School of Computer Science and Engineering,University of New South Wales, Sydney.
Schmidtke, H. R. (2001). The house is north of the river: Relative localization of extended objects. In D. R. Montello (ed.), Spatial Information Theory (pp. 414–430). Berlin: Springer.
Schmidtke, H. R., L. Tschander, C. Eschenbach & C. Habel, (to appear). Change of orientation. In J. Slack & E. van der Zee (eds.), Representing Direction in Language and Space. Oxford: Oxford University Press.
Trullier, O., S. I. Wiener, A. Berthoz & J.-A. Meyer (1997). Biologically based artificial navigation systems: Review and prospects. Progress in Neurobiology, 51. 483–544.
Tversky, B. & P. U. Lee (1999). On pictorial and verbal tools for conveying routes. In C. Freksa & D.M. Mark (eds.), Spatial Information Theory. (pp. 51–64). Berlin: Springer.
Vere, S. & Bickmore, T. (1990) A basic agent. Computational Intelligence, 6, 41–61.
Werner, S., B. Krieg-Brückner & T. Herrmann (2000). Modelling navigational knowledge by route graphs. In C. Freksa, W. Brauer, C. Habel & K.F. Wender (eds.), Spatial Cognition II (pp. 295–316). Berlin: Springer-Verlag.
Wunderlich, D. & R. Reinelt (1982). How to get there from here. In R.J. Jarvella & W. Klein (eds), Speech, Place, and Action (pp. 183–201). Chichester: Wiley.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Copyright information
© 2003 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Tschander, L.B., Schmidtke, H.R., Eschenbach, C., Habel, C., Kulik, L. (2003). A Geometric Agent Following Route Instructions. In: Freksa, C., Brauer, W., Habel, C., Wender, K.F. (eds) Spatial Cognition III. Spatial Cognition 2002. Lecture Notes in Computer Science, vol 2685. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45004-1_6
Download citation
DOI: https://doi.org/10.1007/3-540-45004-1_6
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-40430-9
Online ISBN: 978-3-540-45004-7
eBook Packages: Springer Book Archive