A Fully Linear-Time Approximation Algorithm for Grammar-Based Compression | SpringerLink
Skip to main content

A Fully Linear-Time Approximation Algorithm for Grammar-Based Compression

  • Conference paper
  • First Online:
Combinatorial Pattern Matching (CPM 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2676))

Included in the following conference series:

Abstract

A linear-time approximation algorithm for the grammar-based compression, which is an optimization problem to minimize the size of a context-free grammar deriving a given string, is presented. For each string of length n over unbounded alphabet, the algorithm guarantees O(log2 n) approximation ratio without suffix tree and runs in O(n) time in the sense of randomized model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti-Spaccamela, and M. Protasi. Complexity and Approximation: Combinatorial Optimization Problems and Their Approximability Properties. Springer, 1999.

    Google Scholar 

  2. S. De Agostino and J. A. Storer. On-Line versus Off-Line Computation in Dynamic Text Compression. Inform. Process. Lett., 59:169–174, 1996.

    Article  MATH  MathSciNet  Google Scholar 

  3. M. Charikar, E. Lehman, D. Liu, R. Panigrahy, M. Prabhakaran, A. Rasala, A. Sahai, and A. Shelat. Approximating the Smallest Grammar: Kolmogorov Complexity in Natural Models. In Proc. 29th Ann. Sympo. on Theory of Computing, 792–801, 2002.

    Google Scholar 

  4. D. Gusfield. Algorithms on Strings, Trees, and Sequences. Computer Science and Computational Biology. Cambridge University Press, 1997.

    Google Scholar 

  5. T. Kida, Y. Shibata, M. Takeda, A. Shinohara, and S. Arikawa. Collage System: a Unifying Framework for Compressed Pattern Matching. Theoret. Comput. Sci. (to appear).

    Google Scholar 

  6. J. C. Kieffer and E.-H. Yang. Grammar-Based Codes: a New Class of Universal Lossless Source Codes. IEEE Trans. on Inform. Theory, 46(3):737–754, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  7. J. C. Kieffer, E.-H. Yang, G. Nelson, and P. Cosman. Universal Lossless Compression via Multilevel Pattern Matching. IEEE Trans. Inform. Theory, IT-46(4), 1227–1245, 2000.

    Article  MathSciNet  Google Scholar 

  8. D. Knuth. Seminumerical Algorithms. Addison-Wesley, 441–462, 1981.

    Google Scholar 

  9. N. J. Larsson and A. Moffat. Offline Dictionary-Based Compression. Proceedings of the IEEE, 88(11):1722–1732, 2000.

    Article  Google Scholar 

  10. E. Lehman. Approximation Algorithms for Grammar-Based Compression. PhD thesis, MIT, 2002.

    Google Scholar 

  11. E. Lehman and A. Shelat. Approximation Algorithms for Grammar-Based Compression. In Proc. 20th Ann. ACM-SIAM Sympo. on Discrete Algorithms, 205–212, 2002.

    Google Scholar 

  12. M. Lothaire. Combinatorics on Words, volume 17 of Encyclopedia of Mathematics and Its Applications. Addison-Wesley, 1983.

    Google Scholar 

  13. M. Farach. Optimal Suffix Tree Construction with Large Alphabets. In Proc. 38th Ann. Sympo. on Foundations of Computer Science, 137–143, 1997.

    Google Scholar 

  14. C. Nevill-Manning and I. Witten. Compression and Explanation Using Hierarchical Grammars. Computer Journal, 40(2/3):103–116, 1997.

    Article  Google Scholar 

  15. W. Rytter. Application of Lempel-Ziv Factorization to the Approximation of Grammar-Based Compression. In Proc. 13th Ann. Sympo. Combinatorial Pattern Matching, 20–31, 2002.

    Google Scholar 

  16. J. A. Storer and T. G. Szymanski. The Macro Model for Data Compression. In Proc. 10th Ann. Sympo. on Theory of Computing, pages 30–39, San Diego, California, 1978. ACM Press.

    Google Scholar 

  17. T. A. Welch. A Technique for High Performance Data Compression. IEEE Comput., 17:8–19, 1984.

    Google Scholar 

  18. E.-H. Yang and J. C. Kieffer. Efficient Universal Lossless Data Compression Algorithms Based on a Greedy Sequential Grammar Transform-Part One: without Context Models. IEEE Trans. on Inform. Theory, 46(3):755–777, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  19. J. Ziv and A. Lempel. A Universal Algorithm for Sequential Data Compression. IEEE Trans. on Inform. Theory, IT-23(3):337–349, 1977.

    Article  MathSciNet  Google Scholar 

  20. J. Ziv and A. Lempel. Compression of Individual Sequences via Variable-Rate Coding. IEEE Trans. on Inform. Theory, 24(5):530–536, 1978.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sakamoto, H. (2003). A Fully Linear-Time Approximation Algorithm for Grammar-Based Compression. In: Baeza-Yates, R., Chávez, E., Crochemore, M. (eds) Combinatorial Pattern Matching. CPM 2003. Lecture Notes in Computer Science, vol 2676. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44888-8_25

Download citation

  • DOI: https://doi.org/10.1007/3-540-44888-8_25

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40311-1

  • Online ISBN: 978-3-540-44888-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics