Tsukuba Termination Tool | SpringerLink
Skip to main content

Tsukuba Termination Tool

  • Conference paper
  • First Online:
Rewriting Techniques and Applications (RTA 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2706))

Included in the following conference series:

Abstract

We present a tool for automatically proving termination of first-order rewrite systems. The tool is based on the dependency pair method of Arts and Giesl. It incorporates several new ideas that make the method more efficient. The tool produces high-quality output and has a convenient web interface.

http://www.score.is.tsukuba.ac.jp/ttt/

Partially supported by the Grant-in-Aid for Scientific Research (C)(2) 13224006 of the Ministry of Education, Culture, Sports, Science and Technology of Japan.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. T. Arts. System description: The dependency pair method. In Proc. 11th RTA, volume 1833 of LNCS, pages 261–264, 2001.

    Google Scholar 

  2. T. Arts and J. Giesl. Termination of term rewriting using dependency pairs. Theoretical Computer Science, 236:133–178, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  3. T. Arts and J. Giesl. A collection of examples for termination of term rewriting using dependency pairs. Technical Report AIB-2001-09, RWTH Aachen, 2001. Available at http://aib.informatik.rwth-aachen.de/.

  4. C. Borralleras, M. Ferreira, and A. Rubio. Complete monotonic semantic path orderings. In Proc. 17th CADE, volume 1831 of LNAI, pages 346–364, 2000.

    Google Scholar 

  5. E. Contejean, C. Marché, B. Monate, and X. Urbain. CiME version 2, 2000. Available at http://cime.lri.fr/.

  6. N. Dershowitz. 33 Examples of termination. In French Spring School of Theoretical Computer Science, volume 909 of LNCS, pages 16–26, 1995.

    Google Scholar 

  7. J. Giesl, T. Arts, and E. Ohlebusch. Modular termination proofs for rewriting using dependency pairs. Journal of Symbolic Computation, 34(1):21–58, 2002.

    Article  MathSciNet  Google Scholar 

  8. http://www.research.att.com/sw/tools/graphviz/.

  9. N. Hirokawa and A. Middeldorp. Automating the dependency pair method. In Proc. 19th CADE, LNAI, 2003. To appear.

    Google Scholar 

  10. D.J. King and J. Launchbury. Structuring depth-first search algorithms in Haskell. In Proc. 22nd POPL, pages 344–354, 1995.

    Google Scholar 

  11. K. Korovin and A. Voronkov. Verifying orientability of rewrite rules using the Knuth-Bendix order. In Proc. 12th RTA, volume 2051 of LNCS, pages 137–153, 2001.

    Google Scholar 

  12. A. Middeldorp. Approximations for strategies and termination. In Proc. 2nd WRS, volume 70(6) of Electronic Notes in Theoretical Computer Science, 2002.

    Google Scholar 

  13. http://caml.inria.fr/ocaml/.

  14. E. Ohlebusch. Hierarchical termination revisited. Information Processing Letters, 84(4):207–214, 2002.

    Article  MATH  MathSciNet  Google Scholar 

  15. J. Steinbach. Automatic termination proofs with transformation orderings. In Proc. 6th RTA, volume 914 of LNCS, pages 11–25, 1995.

    Google Scholar 

  16. J. Steinbach and U. Kühler. Check your ordering — termination proofs and open problems. Technical Report SR-90-25, Universität Kaiserslautern, 1990.

    Google Scholar 

  17. Joachim Steinbach. Simplification orderings: History of results. Fundamenta Informaticae, 24:47–87, 1995.

    MATH  MathSciNet  Google Scholar 

  18. X. Urbain. Automated incremental termination proofs for hierarchically defined term rewriting systems. In Proc. IJCAR, volume 2083 of LNAI, pages 485–498, 2001.

    MathSciNet  Google Scholar 

  19. X. Urbain. Modular & incremental automated termination proofs. Journal of Automated Reasoning, 2003. To appear.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hirokawa, N., Middeldorp, A. (2003). Tsukuba Termination Tool. In: Nieuwenhuis, R. (eds) Rewriting Techniques and Applications. RTA 2003. Lecture Notes in Computer Science, vol 2706. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44881-0_22

Download citation

  • DOI: https://doi.org/10.1007/3-540-44881-0_22

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40254-1

  • Online ISBN: 978-3-540-44881-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics