CW Complexes: Topological Mainframe for Numerical Representations of Objects | SpringerLink
Skip to main content

CW Complexes: Topological Mainframe for Numerical Representations of Objects

  • Conference paper
  • First Online:
Computational Science and Its Applications — ICCSA 2003 (ICCSA 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2669))

Included in the following conference series:

  • 1524 Accesses

Abstract

Dimensionally non-homogeneous pointsets with internal structure are the focus in a consequent number of studies in both computational geometry and discrete (or digital) geometry, and lead to various practical applications in geometric modeling and computer imagery. Our motivation is to revisit the well known notion of algebraic topology, the cell CW complex, and to use it as an abstract framework for numerical representation of inhomogeneous objects. Two representational issues, respectively in non-manifold solid modeling and in discrete object boundary reconstruction, are discussed in illustration of this general setting.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. Ahronovitz, J.P. Aubert, and C. Fiorio. Représentation topologique associée à lá nalyse dímages. Technical Report 95040, Laboratoire dÍnformatique, de Robotique et de Microlectronique de Montpellier, 1995.

    Google Scholar 

  2. E. Ahronovitz, J.P. Aubert, and C. Fiorio. The star-topology: a topology for image analysis. In 5th Discrete Geometry for Computer Imagery, Proceedings, pages 107–116, September 1995. Groupe GDR PRC/AMI du CNRS.

    Google Scholar 

  3. R. Bidarra, K.J. Kraker, and W.F Bronsvoort. Representation and management of feature information in a cellular model. Computer-Aided Design, 30(4):301–313, 1998.

    Article  MATH  Google Scholar 

  4. J.P. Braquelaire and L. Brun. Image segmentation with topological maps and inter-pixel representation. Journal on Visual Communication and Image Representation, 9(1):62–79, 1998.

    Article  Google Scholar 

  5. P.R. Cavalcanti, P.C.P Carvalho, and L.F. Martha. Non-manifold modelling: an approach based on spatial subdivision. Computer-Aided Design, 29(3):209–220, 1997.

    Article  Google Scholar 

  6. G.A. Crocker and W.F. Reinke. An editable non-manifold boundary representation. IEEE Computer Graphics & Applications, pages 39–51, March 1991.

    Google Scholar 

  7. G. Damiand. Définition et étude dún modèle topologique minimal de reprsentation dímages 2D et 3D. PhD thesis, Université Montpellier II, December 2001.

    Google Scholar 

  8. P. Desbarats and S. Gueorguieva. Cw complexes: Topological mainframe for numerical representations of objects. Research report, LaBRI, UMR 5800, Université Bordeaux 1, 2003. RR-1291-03.

    Google Scholar 

  9. Pascal Desbarats. Structuration dímages segmentées 3D discrètes. PhD thesis, Université Bordeaux I, 2001.

    Google Scholar 

  10. E. Elter and P. Lienhardt. Cellular complexes as structured semi-simplicial sets. International Journal of Computational Geometry & Applications, 1(2):191–217, 1994.

    MATH  Google Scholar 

  11. T. Fang and L.A. L.A. Piegl. Delaunay triangulation in three dimensions. IEEE Computer Graphics and Applications, pages 62–69, Septembre 1995.

    Google Scholar 

  12. V. Ferrucci and A. Paoluzzi. Extrusion and boundary evaluation for multidimensional polyhedra. Computer-Aided-Design, 23(1):40–50, January-February 1991.

    Article  MATH  Google Scholar 

  13. L. Floriani, P. Magillo, and E. Puppo. Multiresolution representation of shapes based on cell complexes. In Discrete Geometry for Computer Imagery, 1999.

    Google Scholar 

  14. A.T. Fomenko and S.V. Mateev. Algorithms and Computer Methods for Three-Manifolds. Kluwer Academic Publishers, 1997.

    Google Scholar 

  15. J. Françon. Discrete combinatorial surfaces. CVGIP: Graphical Models and Image Processing, 57(1):20–26, 1995.

    Article  Google Scholar 

  16. J. Françon. On recent trends in discrete geometry in computer science. In 6th Discrete Geometry for Computer Imagery, Proceedings, pages 3–16. Springer-Verlag Berlin Heidelberg, 1996. Groupe GDR PRC/AMI du CNRS.

    Google Scholar 

  17. L. Fuchs. Une spécification formelle des modèles de courbes et de surfaces de forme libre. Phd thesis, Université Louis Pasteur, 1997. 2791.

    Google Scholar 

  18. L. Fuchs and P. Lienhardt. Topological structures for d-dimensional free-form objects. In Computer Aided Geometric Design, 1997.

    Google Scholar 

  19. S. Gueorguieva and D. Marcheix. Non-manifold boundary representation for solid modeling. In Proc. of the International Computer Symposium, 1994.

    Google Scholar 

  20. E.L. Gursoz, Y. Choi, and B. Prinz. Vertex-based representation of non-manifold boundaries. In Geometric modeling for product engineering., 1990.

    Google Scholar 

  21. J.H. Hang and A.G.G. Requicha. Feature recognition from cad models. IEEE Computer Graphics and Applications, pages 80–94, March/April 1998.

    Google Scholar 

  22. G.T. Herman. Discrete multidimensional jordan surfaces. CVGIP: Graphical Models and Image Processing, 54(6):507–515, November 1992.

    Article  MathSciNet  Google Scholar 

  23. T.H. Herman. An abstract theoretical foundation of the geometry of digital spaces. In Discrete Geometry for Computer Imagery, pages 279–288. Springer-Verlag Berlin Heidelberg, 2002. LNCS 2301.

    Chapter  Google Scholar 

  24. Ch.M Hoffmann. Geometric and Solid Modeling: An Introduction. Morgan Kaufmann, 1989.

    Google Scholar 

  25. E. Khalimski, R. Koppermann, and P.R. Meyer. Computer graphics and connected topology on finite ordered sets. In Topology and its applications, pages 27–55, 1990.

    Google Scholar 

  26. T.Y. Kong, A.W. Roscoe, and A. Rosenfeld. Concept of digital geometry. In Special Issue on digital topology, Topology Applications, pages 219–262, 1992.

    Google Scholar 

  27. V.A. Kovalevski. Finite topology as applied in image analysis. Computer Vision, Graphics and Image Processing, 46:141–161, 1989.

    Article  Google Scholar 

  28. V.A. Kovalevsky. Digital geometry based on the topology of abstract cell complexes. In Discrete Geometry for Computer Imagery. Springer-Verlag Berlin Heidelberg, 1993. LNCS 2301.

    Google Scholar 

  29. V. Kumar, D. Burns, D. Dutta, and C. Hoffmann. A framework for object modeling. Computer-Aided Design, 31:541–556, 1999.

    Article  MATH  Google Scholar 

  30. T.L. Kunii and S. Takahashi. Area guide map modeling by manifolds and cwcomplexes. In IFIP TC5/WG2 Working Conference on Geometric Modeling, 1993.

    Google Scholar 

  31. Veronique Lang. Une étude de l’utilisation des ensembles semi-simpliciaux en modélisation géométrique interactive. PhD thesis, Université Louis Pasteur de Strasbourg, 1995.

    Google Scholar 

  32. P. Lienhardt. Subdivisions of surfaces and generalized maps. In EUROGRAPHICS’89, 1989.

    Google Scholar 

  33. P. Lienhardt. Topological models for boundary representation: A comparison with n-dimensional generalized maps. Computer-Aided Design, pages 59–82, January/February 1991.

    Google Scholar 

  34. P. Lienhardt. N-dimensional generalized combinatorial maps and cellular quasimanifolds. International Journal of Computational Geometry & Applications, 4(3):275–324, 1994.

    Article  MATH  MathSciNet  Google Scholar 

  35. P. Lienhardt. Aspect in topology-based geometric modeling: Possible tools for discrete geometry? In Proc. 7th DGCI, Montepellier, France, volume 1347 of LNCS, pages 33–48, 1997.

    Google Scholar 

  36. A. Losa and B Cervelle. 3d topological modeling and visualisation for 3d gis. Computer & Graphics, 23:469–478, 1999.

    Article  Google Scholar 

  37. A.T. Lundell and S. Weingram. The Topology of CW Complexes. Van Nostrand Reinhold Company, 1969.

    Google Scholar 

  38. D. Marcheix and S. Gueorguieva. Topological operators for non-manifold modeling. In Proc. of the Third International Conference in Central Europe on Comput er Graphics and Visualisation 95, 1995.

    Google Scholar 

  39. David Marcheix. Modélisation géométrique d’objets non-variétés: construction, représentation et manipulation. PhD thesis, Université Bordeuax 1, 1996.

    Google Scholar 

  40. H. Masuda. Form-feature representation based on non-manifold geometric modelling. In MICAD’92, 1992.

    Google Scholar 

  41. H. Masuda and R. Ohbuchi. Coding topological structure of 3d cad models. Computer-Aided Design, 32:367–375, 2000.

    Article  Google Scholar 

  42. H. Masuda and K. Shimada. A mathematical theory and applications of non-manifold geometric modeling. In IFIP/GI Advanced Geometric Modeling for Engineering Applications, 1990.

    Google Scholar 

  43. A. Maulik. An efficient intersection algorithm for polyhedral cellular decompositions. In ACM Symposium on Solid Modelling and Foundations, 1991.

    Google Scholar 

  44. J. Peter May. Simplicial Objects in Algebraic Topology. Chicago University Press, 1967.

    Google Scholar 

  45. M. Mantyla. Geometric and Solid Modeling: An introduction. Computer Science Press, 1988.

    Google Scholar 

  46. A.E. Middleditch, C.M.P. Reade, and A.J. Gomes. Set-combinations of mixeddimension cellular objects. Computer-Aided Design, pages 683–694, 1999.

    Google Scholar 

  47. John Milnor. The geometric realization of semi-simplicial complex. Annals of Mathematics, 65(2): 357–362, March 1957.

    Article  MathSciNet  Google Scholar 

  48. A. Paoluzzi, M. Ramella, and A. Santarelli. Boolean algebra over linear polyhedra. Computer-Aided Design, 21(8):474–484, October 1989.

    Article  MATH  Google Scholar 

  49. F. Paoluzzi, F. Bernardini, C. Cattani, and V. Ferrucci. Dimension-independent modeling with simplicial complexes. ACM Transactions on Graphics, 12(1):56–102, January 1993.

    Article  MATH  Google Scholar 

  50. V. Pascucci, V. Ferrucci, and A. Paoluzzi. Dimension-independant convex-cell based hpc: Skeletons and product. Technical report, University La Sapienza, Roma, Italy, 1995.

    Google Scholar 

  51. D.B. Perng and C.F. Chang. Resolving feature interactions in 3d part editing. Computer-Aided Geometric Design, 29(10):687–699, 1997.

    Article  Google Scholar 

  52. A. Rosenfeld and A.C. Kak. Digital Picture Processing. Harbour and Brace, 1982.

    Google Scholar 

  53. A. Rosenfeld, T.Y. Kong, and A.Y. Wu. Digital surfaces. CVGIP: Graphical Models and Image Processing, 53(6):305–312, July 1991.

    Article  MATH  Google Scholar 

  54. J.R. Rossignac. Issues on feature-based editing and interrogation of solid models. Computer & Graphics, 14(2):149–172, 1990.

    Article  Google Scholar 

  55. J.R. Rossignac and D. Cardoze. Matchmaker: Manifold breps for non-manifold r-sets. In ACM Solid Modelling’99, 1999.

    Google Scholar 

  56. J.R. Rossignac and M.A. O’Connor. Sgc: A dimension-independent-model for pointsets with internal structure and incomplete boundaries. Research report rc14340, IBM T.J. Watson Research Center, 1989. NY 10598.

    Google Scholar 

  57. J.R. Rossignac and A.A.G Requicha. Constructive non-regularized geometry. Computer-Aided Design, 23(1):21–32, January/February 1991.

    Article  MATH  Google Scholar 

  58. N. Sapidis and R. Perucchio. Solid/solid classi.cation operations for recursive spatial decomposition and domain triangulation of solid models. Computer-Aided Design, (10):517–529, October 1992.

    Article  Google Scholar 

  59. Y. Shinagawa, T.L. Kunii, and Y.L. Kergosien. Surface coding based on morse theory. IEEE Computer Graphics and Applications, 11(5):66–78, 1991.

    Article  Google Scholar 

  60. K. Weiler. The radial edge structure: A topological representation for nonmanifold geometric boundary modeling. In Geometric Modeling for CAD Applications, IFIP’88, 1988.

    Google Scholar 

  61. Y. Yamaguchi and F Kimura. Non-manifold topology based on coupling entities. IEEE Computer Graphics & Applications, pages 42–50, January 1995.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Desbarats, P., Gueorguieva, S. (2003). CW Complexes: Topological Mainframe for Numerical Representations of Objects. In: Kumar, V., Gavrilova, M.L., Tan, C.J.K., L’Ecuyer, P. (eds) Computational Science and Its Applications — ICCSA 2003. ICCSA 2003. Lecture Notes in Computer Science, vol 2669. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44842-X_51

Download citation

  • DOI: https://doi.org/10.1007/3-540-44842-X_51

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40156-8

  • Online ISBN: 978-3-540-44842-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics