Abstract
Dimensionally non-homogeneous pointsets with internal structure are the focus in a consequent number of studies in both computational geometry and discrete (or digital) geometry, and lead to various practical applications in geometric modeling and computer imagery. Our motivation is to revisit the well known notion of algebraic topology, the cell CW complex, and to use it as an abstract framework for numerical representation of inhomogeneous objects. Two representational issues, respectively in non-manifold solid modeling and in discrete object boundary reconstruction, are discussed in illustration of this general setting.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
References
E. Ahronovitz, J.P. Aubert, and C. Fiorio. Représentation topologique associée à lá nalyse dímages. Technical Report 95040, Laboratoire dÍnformatique, de Robotique et de Microlectronique de Montpellier, 1995.
E. Ahronovitz, J.P. Aubert, and C. Fiorio. The star-topology: a topology for image analysis. In 5th Discrete Geometry for Computer Imagery, Proceedings, pages 107–116, September 1995. Groupe GDR PRC/AMI du CNRS.
R. Bidarra, K.J. Kraker, and W.F Bronsvoort. Representation and management of feature information in a cellular model. Computer-Aided Design, 30(4):301–313, 1998.
J.P. Braquelaire and L. Brun. Image segmentation with topological maps and inter-pixel representation. Journal on Visual Communication and Image Representation, 9(1):62–79, 1998.
P.R. Cavalcanti, P.C.P Carvalho, and L.F. Martha. Non-manifold modelling: an approach based on spatial subdivision. Computer-Aided Design, 29(3):209–220, 1997.
G.A. Crocker and W.F. Reinke. An editable non-manifold boundary representation. IEEE Computer Graphics & Applications, pages 39–51, March 1991.
G. Damiand. Définition et étude dún modèle topologique minimal de reprsentation dímages 2D et 3D. PhD thesis, Université Montpellier II, December 2001.
P. Desbarats and S. Gueorguieva. Cw complexes: Topological mainframe for numerical representations of objects. Research report, LaBRI, UMR 5800, Université Bordeaux 1, 2003. RR-1291-03.
Pascal Desbarats. Structuration dímages segmentées 3D discrètes. PhD thesis, Université Bordeaux I, 2001.
E. Elter and P. Lienhardt. Cellular complexes as structured semi-simplicial sets. International Journal of Computational Geometry & Applications, 1(2):191–217, 1994.
T. Fang and L.A. L.A. Piegl. Delaunay triangulation in three dimensions. IEEE Computer Graphics and Applications, pages 62–69, Septembre 1995.
V. Ferrucci and A. Paoluzzi. Extrusion and boundary evaluation for multidimensional polyhedra. Computer-Aided-Design, 23(1):40–50, January-February 1991.
L. Floriani, P. Magillo, and E. Puppo. Multiresolution representation of shapes based on cell complexes. In Discrete Geometry for Computer Imagery, 1999.
A.T. Fomenko and S.V. Mateev. Algorithms and Computer Methods for Three-Manifolds. Kluwer Academic Publishers, 1997.
J. Françon. Discrete combinatorial surfaces. CVGIP: Graphical Models and Image Processing, 57(1):20–26, 1995.
J. Françon. On recent trends in discrete geometry in computer science. In 6th Discrete Geometry for Computer Imagery, Proceedings, pages 3–16. Springer-Verlag Berlin Heidelberg, 1996. Groupe GDR PRC/AMI du CNRS.
L. Fuchs. Une spécification formelle des modèles de courbes et de surfaces de forme libre. Phd thesis, Université Louis Pasteur, 1997. 2791.
L. Fuchs and P. Lienhardt. Topological structures for d-dimensional free-form objects. In Computer Aided Geometric Design, 1997.
S. Gueorguieva and D. Marcheix. Non-manifold boundary representation for solid modeling. In Proc. of the International Computer Symposium, 1994.
E.L. Gursoz, Y. Choi, and B. Prinz. Vertex-based representation of non-manifold boundaries. In Geometric modeling for product engineering., 1990.
J.H. Hang and A.G.G. Requicha. Feature recognition from cad models. IEEE Computer Graphics and Applications, pages 80–94, March/April 1998.
G.T. Herman. Discrete multidimensional jordan surfaces. CVGIP: Graphical Models and Image Processing, 54(6):507–515, November 1992.
T.H. Herman. An abstract theoretical foundation of the geometry of digital spaces. In Discrete Geometry for Computer Imagery, pages 279–288. Springer-Verlag Berlin Heidelberg, 2002. LNCS 2301.
Ch.M Hoffmann. Geometric and Solid Modeling: An Introduction. Morgan Kaufmann, 1989.
E. Khalimski, R. Koppermann, and P.R. Meyer. Computer graphics and connected topology on finite ordered sets. In Topology and its applications, pages 27–55, 1990.
T.Y. Kong, A.W. Roscoe, and A. Rosenfeld. Concept of digital geometry. In Special Issue on digital topology, Topology Applications, pages 219–262, 1992.
V.A. Kovalevski. Finite topology as applied in image analysis. Computer Vision, Graphics and Image Processing, 46:141–161, 1989.
V.A. Kovalevsky. Digital geometry based on the topology of abstract cell complexes. In Discrete Geometry for Computer Imagery. Springer-Verlag Berlin Heidelberg, 1993. LNCS 2301.
V. Kumar, D. Burns, D. Dutta, and C. Hoffmann. A framework for object modeling. Computer-Aided Design, 31:541–556, 1999.
T.L. Kunii and S. Takahashi. Area guide map modeling by manifolds and cwcomplexes. In IFIP TC5/WG2 Working Conference on Geometric Modeling, 1993.
Veronique Lang. Une étude de l’utilisation des ensembles semi-simpliciaux en modélisation géométrique interactive. PhD thesis, Université Louis Pasteur de Strasbourg, 1995.
P. Lienhardt. Subdivisions of surfaces and generalized maps. In EUROGRAPHICS’89, 1989.
P. Lienhardt. Topological models for boundary representation: A comparison with n-dimensional generalized maps. Computer-Aided Design, pages 59–82, January/February 1991.
P. Lienhardt. N-dimensional generalized combinatorial maps and cellular quasimanifolds. International Journal of Computational Geometry & Applications, 4(3):275–324, 1994.
P. Lienhardt. Aspect in topology-based geometric modeling: Possible tools for discrete geometry? In Proc. 7th DGCI, Montepellier, France, volume 1347 of LNCS, pages 33–48, 1997.
A. Losa and B Cervelle. 3d topological modeling and visualisation for 3d gis. Computer & Graphics, 23:469–478, 1999.
A.T. Lundell and S. Weingram. The Topology of CW Complexes. Van Nostrand Reinhold Company, 1969.
D. Marcheix and S. Gueorguieva. Topological operators for non-manifold modeling. In Proc. of the Third International Conference in Central Europe on Comput er Graphics and Visualisation 95, 1995.
David Marcheix. Modélisation géométrique d’objets non-variétés: construction, représentation et manipulation. PhD thesis, Université Bordeuax 1, 1996.
H. Masuda. Form-feature representation based on non-manifold geometric modelling. In MICAD’92, 1992.
H. Masuda and R. Ohbuchi. Coding topological structure of 3d cad models. Computer-Aided Design, 32:367–375, 2000.
H. Masuda and K. Shimada. A mathematical theory and applications of non-manifold geometric modeling. In IFIP/GI Advanced Geometric Modeling for Engineering Applications, 1990.
A. Maulik. An efficient intersection algorithm for polyhedral cellular decompositions. In ACM Symposium on Solid Modelling and Foundations, 1991.
J. Peter May. Simplicial Objects in Algebraic Topology. Chicago University Press, 1967.
M. Mantyla. Geometric and Solid Modeling: An introduction. Computer Science Press, 1988.
A.E. Middleditch, C.M.P. Reade, and A.J. Gomes. Set-combinations of mixeddimension cellular objects. Computer-Aided Design, pages 683–694, 1999.
John Milnor. The geometric realization of semi-simplicial complex. Annals of Mathematics, 65(2): 357–362, March 1957.
A. Paoluzzi, M. Ramella, and A. Santarelli. Boolean algebra over linear polyhedra. Computer-Aided Design, 21(8):474–484, October 1989.
F. Paoluzzi, F. Bernardini, C. Cattani, and V. Ferrucci. Dimension-independent modeling with simplicial complexes. ACM Transactions on Graphics, 12(1):56–102, January 1993.
V. Pascucci, V. Ferrucci, and A. Paoluzzi. Dimension-independant convex-cell based hpc: Skeletons and product. Technical report, University La Sapienza, Roma, Italy, 1995.
D.B. Perng and C.F. Chang. Resolving feature interactions in 3d part editing. Computer-Aided Geometric Design, 29(10):687–699, 1997.
A. Rosenfeld and A.C. Kak. Digital Picture Processing. Harbour and Brace, 1982.
A. Rosenfeld, T.Y. Kong, and A.Y. Wu. Digital surfaces. CVGIP: Graphical Models and Image Processing, 53(6):305–312, July 1991.
J.R. Rossignac. Issues on feature-based editing and interrogation of solid models. Computer & Graphics, 14(2):149–172, 1990.
J.R. Rossignac and D. Cardoze. Matchmaker: Manifold breps for non-manifold r-sets. In ACM Solid Modelling’99, 1999.
J.R. Rossignac and M.A. O’Connor. Sgc: A dimension-independent-model for pointsets with internal structure and incomplete boundaries. Research report rc14340, IBM T.J. Watson Research Center, 1989. NY 10598.
J.R. Rossignac and A.A.G Requicha. Constructive non-regularized geometry. Computer-Aided Design, 23(1):21–32, January/February 1991.
N. Sapidis and R. Perucchio. Solid/solid classi.cation operations for recursive spatial decomposition and domain triangulation of solid models. Computer-Aided Design, (10):517–529, October 1992.
Y. Shinagawa, T.L. Kunii, and Y.L. Kergosien. Surface coding based on morse theory. IEEE Computer Graphics and Applications, 11(5):66–78, 1991.
K. Weiler. The radial edge structure: A topological representation for nonmanifold geometric boundary modeling. In Geometric Modeling for CAD Applications, IFIP’88, 1988.
Y. Yamaguchi and F Kimura. Non-manifold topology based on coupling entities. IEEE Computer Graphics & Applications, pages 42–50, January 1995.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2003 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Desbarats, P., Gueorguieva, S. (2003). CW Complexes: Topological Mainframe for Numerical Representations of Objects. In: Kumar, V., Gavrilova, M.L., Tan, C.J.K., L’Ecuyer, P. (eds) Computational Science and Its Applications — ICCSA 2003. ICCSA 2003. Lecture Notes in Computer Science, vol 2669. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44842-X_51
Download citation
DOI: https://doi.org/10.1007/3-540-44842-X_51
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-40156-8
Online ISBN: 978-3-540-44842-6
eBook Packages: Springer Book Archive