Approximate Distance Labeling Schemes | SpringerLink
Skip to main content

Approximate Distance Labeling Schemes

Extended Abstract

  • Conference paper
  • First Online:
Algorithms — ESA 2001 (ESA 2001)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2161))

Included in the following conference series:

  • 1709 Accesses

Abstract

We consider the problem of labeling the nodes of an n-node graph G with short labels in such a way that the distance between any two nodes u,v of G can be approximated efficiently (in constanttime) by merely inspecting the labels of u and v, without using any other information. We develop such constant approximate distance labeling schemes for the classes of trees, bounded treewidth graphs, planar graphs, k-chordal graphs, and graphs with a dominating pair (including for instance interval, permutation, and AT-free graphs). We also establish lower bounds, and prove that most of our schemes are optimal in terms of the length of the labels generated and the quality of the approximation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. M. A. Breuer and J. Folkman. An unexpected result on coding the vertices of a graph. J. of Mathematical Analysis and Applications, 20:583–600, 1967.

    Article  MATH  MathSciNet  Google Scholar 

  2. M. A. Breuer. Coding the vertexes of a graph. IEEE Trans. on Information Theory, IT-12:148–153, 1966.

    Article  MathSciNet  Google Scholar 

  3. D. G. Corneil, S. Olariu, and L. Stewart. Asteroidal triple-free graphs. SIAM Journal on Discrete Mathematics, 10(3):399–430, Aug. 1997.

    Google Scholar 

  4. P. Erdös, A. Rényi, and V. T. Sós. On a problem of graph theory. In Studia Sci. Math. Hungar., vol. 1, pp. 215–235, 1966.

    MATH  MathSciNet  Google Scholar 

  5. G. N. Frederickson and R. Janardan. Efficient message routing in planar networks. SIAM Journal on Computing, 18(4):843–857, Aug. 1989.

    Google Scholar 

  6. M. L. Fredman and D. E. Willard. Surpassing the information theoric bound with fusion trees. J. of Computer and System Sciences, 47:424–436, 1993.

    Article  MATH  MathSciNet  Google Scholar 

  7. M. C. Golumbic. Algorithmic Graph Theory and Perfect Graphs. Academic Press, Harcourt Brace Jovanovich, Academic Press edition, 1980.

    MATH  Google Scholar 

  8. R. L. Graham and H. O. Pollak. On embedding graphs in squashed cubes. Lecture Notes in Mathematics, 303:99–110, 1972.

    Google Scholar 

  9. C. Gavoille, M. Katz, N. A. Katz, C. Paul, and D. Peleg. Approximate distance labeling schemes. TR RR-1250-00, LaBRI, University of Bordeaux, 351, cours de la Libération, 33405 Talence Cedex, France, Dec. 2000.

    Google Scholar 

  10. C. Gavoille, D. Peleg, S. Pérennes, and R. Raz. Distance labeling in graphs. In 12 th Symposium on Discrete Algorithms (SODA), pp. 210–219. ACM-SIAM, Jan. 2001.

    Google Scholar 

  11. M. Katz, N. A. Katz, and D. Peleg. Distance labeling schemes for well-separated graph classes. In 17 th Annual Symposium on Theoretical Aspects of Computer Science (STACS), vol. 1770 of LNCS, pp. 516–528. Springer, Feb. 2000.

    Google Scholar 

  12. S. Kannan, M. Naor, and S. Rudich. Implicit representation of graphs. In 20 th Annual ACM Symposium on Theory of Computing (STOC), pp. 334–343, Chicago, IL, May 1988.

    Google Scholar 

  13. C. G. Lekkerkerker and J. Ch. Boland. Representation of a finite graph by a set of intervals on the real line. Fund. Math., 51:45–64, 1962.

    MATH  MathSciNet  Google Scholar 

  14. F. Lazebnik, V. A. Ustimenko, and A. J. Woldar. A new series of dense graphs of high girth. Bulletin of American Mathematical Society (New Series), 32(1):73–79, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  15. J. I. Munro and V. Raman. Succinct representation of balanced parentheses, static trees and planar graphs. In 38th Symposium on Foundations of Computer Science (FOCS), pp. 118–126. IEEE Comp. Society Press, 1997.

    Google Scholar 

  16. J. I. Munro. Tables. In 16th FST&TCS, vol. 1180 of LNCS, pp. 37–42. Springer-Verlag, 1996.

    Google Scholar 

  17. D. Peleg. Proximity-preserving labeling schemes and their applications. In 25th International Workshop, Graph-Theoretic Concepts in Computer Science (WG), vol. 1665 of LNCS, pp. 30–41. Springer, June 1999.

    Google Scholar 

  18. N. Robertson and P. D. Seymour. Graph minors. II. Algorithmic aspects of tree-width. Journal of Algorithms, 7:309–322, 1986.

    Article  MATH  MathSciNet  Google Scholar 

  19. P. Winkler. Proof of the squashed cube conjecture. Combinatorica, 3(1):135–139, 1983.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gavoille, C., Katz, M., Katz, N.A., Paul, C., Peleg, D. (2001). Approximate Distance Labeling Schemes. In: auf der Heide, F.M. (eds) Algorithms — ESA 2001. ESA 2001. Lecture Notes in Computer Science, vol 2161. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44676-1_40

Download citation

  • DOI: https://doi.org/10.1007/3-540-44676-1_40

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42493-2

  • Online ISBN: 978-3-540-44676-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics