Partitioning Colored Point Sets into Monochromatic Parts | SpringerLink
Skip to main content

Partitioning Colored Point Sets into Monochromatic Parts

  • Conference paper
  • First Online:
Algorithms and Data Structures (WADS 2001)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2125))

Included in the following conference series:

Abstract

It is shown that any two-colored set of n points in general position in the plane can be partitioned into at most \( \left\lceil {\tfrac{{n + 1}} {2}} \right\rceil \) monochromatic subsets, whose convex hulls are pairwise disjoint. This bound cannot be improved in general. We present an O(n log n) time algorithm for constructing a partition into fewer parts, if the coloring is unbalanced, i.e., the sizes of the two color classes differ by more than one. The analogous question for k-colored point sets (k > 2) and its higher dimensional variant are also considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. P. K. Agarwal, M. Sharir, and P. Shor, Sharp upper and lower bounds for the length of general Davenport-Schinzel sequences, Journal of Combinatorial Theory, Ser. A, 52 (1989), 228–274.

    Article  MATH  MathSciNet  Google Scholar 

  2. V. Aho, J. Hopcroft and J. Ullman, The Design and analysis of Computer Algorithms, Addison-Wesley, Reading, 1974.

    MATH  Google Scholar 

  3. B. Chazelle, On the convex layers of a planar set, IEEE Transactions on Information Theory, 31(4) (1985), 509–517.

    Article  MATH  MathSciNet  Google Scholar 

  4. H. Davenport and A. Schinzel, A combinatorial problem connected with differential equations, American Journal of Mathematics, 87 (1965), 684–694.

    Article  MATH  MathSciNet  Google Scholar 

  5. T. K. Dey and H. Edelsbrunner, Counting triangle crossings and halving planes, Discrete & Computational Geometry, 12 (1994), 281–289.

    Article  MATH  MathSciNet  Google Scholar 

  6. T. K. Dey and J. Pach, Extremal problems for geometric hypergraphs, Discrete & Computational Geometry, 19 (1998), 473–484.

    Article  MATH  MathSciNet  Google Scholar 

  7. A. Dumitrescu and R. Kaye, Matching colored points in the plane: some new results, Computational Geometry: Theory and Applications, to appear.

    Google Scholar 

  8. A. Dumitrescu and W. Steiger, On a matching problem in the plane, Workshop on Algorithms and Data Structures, 1999 (WADS’99). Also in: Discrete Mathematics, 211 (2000), 183–195.

    Google Scholar 

  9. S. Hart and M. Sharir, Nonlinearity of Davenport-Schinzel sequences and of generalized path compression schemes, Combinatorica, 6 (1986), 151–177.

    Article  MATH  MathSciNet  Google Scholar 

  10. J. Hershberger and S. Suri, Applications of a semi-dynamic convex hull algorithm, BIT, 32 (1992), 249–267.

    Article  MATH  MathSciNet  Google Scholar 

  11. K. Mehlhorn, Data Structures and Algorithms 3: Multi-dimensional searching and Computational Geometry, Springer Verlag, Berlin, 1984.

    MATH  Google Scholar 

  12. K. Mulmuley, Computational Geometry-An Introduction through Randomized Algorithms, Prentice Hall, Englewood Cliffs, 1994.

    Google Scholar 

  13. J. O’Rourke, Art Gallery Theorems and Algorithms, Oxford University Press, New York, 1987.

    MATH  Google Scholar 

  14. M. Sharir and P. K. Agarwal. Davenport-Schinzel Sequences and Their Geometric Applications, Cambridge University Press, Cambridge, 1995.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dumitrescu, A., Pach, J. (2001). Partitioning Colored Point Sets into Monochromatic Parts. In: Dehne, F., Sack, JR., Tamassia, R. (eds) Algorithms and Data Structures. WADS 2001. Lecture Notes in Computer Science, vol 2125. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44634-6_25

Download citation

  • DOI: https://doi.org/10.1007/3-540-44634-6_25

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42423-9

  • Online ISBN: 978-3-540-44634-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics